ΘΕΜΙΣ ΠΡΩΤΟΠΑΠΑ ΜΗΤΡΟΥ

«ΜΕΛΕΤΗ ΕΚΤΙΜΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ ΑΠΟ ΤΗΝ ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΠΑΡΚΟΥ ΦΩΤΟΒΟΛΤΑΙΚΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΕΠΑΡΧΙΑΣ ΛΕΜΕΣΟΥ

ΘΕΜΙΣ ΠΡΩΤΟΠΑΠΑ-ΜΗΤΡΟΥ

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

1. ΠΕΡΙΛΗΨΗ ... 4
 1.1 Συνοπτική περιγραφή του έργου ... 4
 1.2 Σκοπός του έργου .. 4
 1.3 Ανάγκες σε υποδομή ... 4
 1.4 Περιγραφή του Περιβάλλοντος .. 4
 1.5 Περιβαλλοντικές επιπτώσεις .. 4
 1.6 Συμπεράσματα μελέτης ... 5

2. ΟΡΙΣΜΟΙ ΚΑΙ ΑΚΡΩΝΥΜΙΑ ... 6

3. Το ενεργειακό σύστημα της Κύπρου .. 7
 Εισαγωγή ... 7

3.1. Γενικά ... 7
 3.2. Ηλεκτροπαραγωγή στην Κύπρο .. 8
 3.3. Κατανάλωση ενέργειας στον οικιακό τομέα ... 11
 3.4. Κατανάλωση ενέργειας στον τριτογενή τομέα .. 13
 3.5. Κατανάλωση Ενέργειας στον Βιομηχανικό τομέα ... 14
 3.6. Κατανάλωση Ενέργειας στον τομέα των μεταφορών ... 15
 3.7. Ηλεκτροπαραγωγή από Φωτοβολταϊκά στην Κύπρο ... 16

4. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΤΟΥ ΕΡΓΟΥ ... 20
 4.1. Περιλήψη κεφαλαίου .. 20
 4.2. Σκοπός του έργου .. 20
 4.3. Περιγραφή και Χαρακτηριστικά του έργου ... 20
 4.4. Περιγραφή της Παραγωγικής Διαδικασίας ... 23
 4.5. Κριτήρια επιλογής χώρου εγκατάστασης ΦΒ πάρκου .. 24
 4.6. Πλεονεκτήματα/Μειονεκτήματα εγκατάστασης ΦΒ πάρκου ... 24
 4.7. Θέση του έργου – Περιοχή μελέτης ... 25
 4.9. Νομοθετικές ρυθμίσεις του έργου – Σύνδεση με το δίκτυο .. 29
 4.10. Ανάγκες σε υποδομή ... 31
 4.11. Ανάγκες σε υλικά ... 32
 4.12. Ανάγκες σε προσωπικό ... 32
 4.13. Περιγραφή εργασιών κατά το στάδιο κατασκευής έργου ... 32
 4.14. Περιβαλλοντικές παράμετροι .. 35

5. Αξιολόγηση περιβαλλοντικών επιπτώσεων ... 36
 5.1. Βιολογικό περιβάλλον ... 36
 5.3. Γεωλογία και υδρολογία ... 41
 5.4. Κλιματολογικά και βιοκλιματικά χαρακτηριστικά ... 43
 5.4.1. Μετεωρολογικά δεδομένα ... 43
 5.5. Ποιότητα της ατμόσφαιρας .. 46
 5.6. Δονήσεις .. 46
 5.7. Κυκλοφορία και οδικό δίκτυο .. 47

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150ΚΩ ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
6. ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ .. 48
 6.1. Περίληψη κεφαλαίου .. 48
 6.2. Θόρυβος ... 48
 6.3. Οσμές ... 48
 6.4. Ατμόσφαιρα .. 48
 6.5. Έδαφος και υδάτινοι πόροι .. 50
 6.6. Ανθρώπινη και δημόσια υγεία .. 50
 6.7. Κίνδυνοι για την επαγγελματική υγεία ... 50
 6.8. Χωρίδα και Πανίδα ... 50
 6.9. Τοπίο και Αισθητική ένταξη ... 51
 6.10. Δημόσιες υποδομές ... 51
 6.11. Οδική κυκλοφορία ... 51
 6.12. Δημιουργία αποβλήτων .. 51
 6.13. Φυσικούς πόρους ... 52
 6.14. Ανάλυση Κύκλου Ζωής ... 52
7. ΠΡΟΤΕΙΝΟΜΕΝΑ ΜΕΤΡΑ ΜΕΤΡΙΑΣΜΟΥ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ .. 55
 7.1. Περίληψη κεφαλαίου .. 55
 7.2. Θόρυβος ... 55
 7.3. Ατμόσφαιρα .. 55
 7.4. Οσμές ... 55
 7.5. Έδαφος και υδάτινοι πόροι .. 55
 7.6. Ανθρώπινη και δημόσια υγεία .. 56
 7.7. Κίνδυνοι για την επαγγελματική υγεία ... 56
 7.8. Χωρίδα και Πανίδα ... 56
 7.9. Τοπίο και Αισθητική ένταξη ... 56
 7.10. Δημόσιες υποδομές ... 57
 7.11. Οδική κυκλοφορία ... 57
 7.12. Δημιουργία αποβλήτων .. 57
 7.13. Φυσικούς πόρους ... 57
8. ΑΠΟΨΕΙΣ ΤΟΠΙΚΩΝ ΑΡΧΩΝ .. 58
9. ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΜΠΕΡΑΣΜΑΤΑ ... 59
 9.1. Σύγκριση κατάστασης με και χωρίς το έργο ... 59
 9.2. Αξιολόγηση των επιπτώσεων ... 59
 9.3. Αξιολόγηση του έργου .. 61
10. ΒΙΒΛΙΟΓΡΑΦΙΑ .. 62

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
1. ΠΕΡΙΛΗΨΗ

1.1 ΣΥΝΟΠΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΕΡΓΟΥ

Φωτοβολταϊκά πλαίσια συνδεδεμένα μεταξύ τους θα αποτελούν το ΦΒ πάρκο συνολικής ισχύς 150 kW το οποίο θα αξιοποιεί την ηλιακή ακτινοβολία για την παραγωγή ηλεκτρισμού και την διάθεσή του στο δίκτυο. Τα πλαίσια θα τοποθετηθούν σε βάσεις οι οποίες θα στερεωθούν στο έδαφος σε σειρές. Ο χώρος εγκατάστασης βρίσκεται στη Σωτήρα όπου υπάρχει οδική πρόσβαση και δυνατότητα σύνδεσης του ΦΒ πάρκου με υφιστάμενη γειτονική γραμμή μεταφοράς. Η υλοποίηση του έργου αναμένεται να ολοκληρωθεί κατά τους τελευταίους μήνες του 2012 αφού εξασφαλιστούν οι σχετικές άδειες.

1.2 ΣΚΟΠΟΣ ΤΟΥ ΕΡΓΟΥ

Σκοπός του προτεινομένου έργου είναι η παραγωγή ηλεκτρισμού από μία ανανεώσιμη πηγή ενέργειας (ηλιακή ενέργεια) και η πώληση του στο δίκτυο ηλεκτροδότησης της Κύπρου. Η παραγωγή ηλεκτρικής ενέργειας θα επιτυγχάνεται από σειρά φωτοβολταϊκών πλαισίων.

1.3 ΑΝΑΓΚΕΣ ΣΕ ΥΠΟΔΟΜΗ

Η απαιτούμενη υποδομή για την εγκατάσταση και λειτουργία του έργου είναι:

- Δυνατότητα σύνδεσης με το δίκτυο μεταφοράς ηλεκτρισμού (θα γίνει σχετική αίτηση στην ΑΗΚ).
- Διαθέσιμο νερό για τον καθαρισμό των ΦΒ πλαισίων (περιοδικές επισκέψεις στο πάρκο με βυτιοφόρο).
- Οδική πρόσβαση (υφιστάμενος ασφάλτιος δρόμος από Σούνι –Σωτήρα και παράκαμψη με χωμάτινο).
- Ασφάλεια του ΦΒ πάρκου (προτείνεται περίφραξη και σύστημα παρακολούθησης).

1.4 ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Το προτεινόμενο έργο χωροθετείται εντός των διοικητικών ορίων της κοινότητας Σωτήρας. Ο πληθυσμός της κοινότητας είναι 83κάτοικοι (2001) και οι κύριες δραστηριότητες στη περιοχή είναι οι αμπελοκαλλιέργειες και η εξόρυξη πέτρας. Ο χώρος εγκατάστασης βρίσκεται σε υψόμετρο περίπου 280 m, σε μια περιοχή όπου κυριαρχούν εδαφά με ασβεστολιθικά πετρώματα. Η θέση του έργου βρίσκεται σε υψόμετρο περίπου 280 m, σε μια περιοχή όπου κυριαρχούν εδαφά με ασβεστολιθικά πετρώματα. Η περιοχή μελέτης εμπίπτει σε ζώνη προστασίας Z1 που επεξεργάζεται σύμφωνα με το Τμήμα Πολεοδομίας και Οικήσεως ανάπτυξη φωτοβολταϊκών πάρκων και η βλάστηση στο υπό μελέτη τεμάχιο είναι χαμηλή τυπική βλάστηση που συναντάται στις περισσότερες περιοχές της Κύπρου.

1.5 ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ

Οι αρνητικές επιπτώσεις από το προτεινόμενο έργο μπορούν να χαρακτηρισθούν στο σύνολο τους ως ελάχιστες. Οι επιπτώσεις αυτές είναι κυρίως από τη χρήση διαφόρων υλικών και ενέργειας για την κατασκευή των ΦΒ (στο εργοστάσιο), οι περιορισμένες οχλήσεις θορύβου και σκόνης κατά την εγκατάσταση του ΦΒ πάρκου και ο κίνδυνος από εκπομπές αέριων ρύπων σε περίπτωση
πυρκαγιάς. Απ’ την άλλη, οι θετικές επιπτώσεις από τη λειτουργία του προτεινόμενου έργου είναι πολύ σημαντικές. Το ΦΒ πάρκο θα παράγει ηλεκτρισμό, αθόρυβα, χωρίς απόβλητα και εκπομπές αέριων ρύπων συνεισφέροντας σημαντικά στη προστασία του περιβάλλοντος και την αντιμετώπιση των κλιματικών αλλαγών.

1.6 ΣΥΜΠΕΡΑΣΜΑΤΑ ΜΕΛΕΤΗΣ
Συμπερασματικά, το προτεινόμενο έργο θεωρείται ότι είναι περιβαλλοντικά βιώσιμο εάν κατασκευαστεί στην περιοχή που έχει καθοριστεί και λειτουργεί σύμφωνα με τις προτεινόμενες προδιαγραφές και εισηγήσεις αυτής της μελέτης.
2. ΟΡΙΣΜΟΙ ΚΑΙ ΑΚΡΩΝΥΜΙΑ

Προτεινόμενο έργο: Φωτοβολταϊκό Πάρκο στην κοινότητα Σωτήρα Λεμεσού
Μελετητές: Μιχαλής Σαπαρίλας και Συνεργάτες
Ιδιοκτήτης: ΘΕΜΙΣ ΠΡΩΤΟΠΑΠΑ ΜΗΤΡΟΥ
Περιοχή μελέτης: Περιοχή στο νοτιοδυτικό όριο της κοινότητας Σωτήρα
Τεμάχιο: ΤΕΜΑΧΙΟ 139 Φ53 ΣΧΕΔΙΟ 34

ΑΠΕ: Ανανεώσιμες Πηγές Ενέργειας
ΕΞΕ: Εξοικονόμηση ενέργειας
Ειδικό Ταμείο: Καθιστώθηκε σύμφωνα με τις πρόνοιες του Ν.33(I)/2003 για την προώθηση των ΑΠΕ και της ΕΞΕ
ΦΒ: Φωτοβολταϊκό
ΥΕΒΤ: Υπουργείο Εμπορίου Βιομηχανίας και Τουρισμού
ΑΗΚ: Αρχή Ηλεκτρισμού Κύπρου
ΡΑΕΚ: Ρυθμιστική Αρχή Ενέργειας Κύπρου
ΜΕΕΠ: Μελέτη Εκτίμησης των Επιπτώσεων στο Περιβάλλον
ΔΣΜ: Διαχειριστής Συστήματος Μεταφοράς
Cd: Χημικό στοιχείο Κάδμιο
Te: Χημικό στοιχείο Τελλούριο
Se: Χημικό στοιχείο Σελήνιο
As: Χημικό στοιχείο Αρσενικό
Si: Χημικό στοιχείο Πυρίτιο

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
3. ΤΟ ΕΝΕΡΓΕΙΑΚΟ ΣΥΣΤΗΜΑ ΤΗΣ ΚΥΠΡΟΥ

ΕΙΣΑΓΩΓΗ

Το ενεργειακό σύστημα της Κύπρου χαρακτηρίζεται ως απομονωμένο, χωρίς ενδογενής πηγές ενέργειας, εξαιρουμένου του ανανεώσιμου ενεργειακού δυναμικού, και χωρίς διασυνδέσεις με άλλα Ευρωπαϊκά ή διεθνή Ενεργειακά Δίκτυα ηλεκτρισμού. Εξαιρετικά, τον λόγο εξαρτάται από τα διάφορα είδη των εισαγόμενων προϊόντων και καυσίμων. Συγκεκριμένα το εισαγόμενο αργό πετρέλαιο καθώς επίσης και τα τελικά και τα μεταφορικά προϊόντα του 90% των μεταφορικών και των εισαγόμενων ορυκτών καυσίμων.

Η κατανάλωση ενέργειας παρουσιάζει την αύξηση της τάξης του 3% τα τελευταία χρόνια. Ο τομέας των μεταφορών αποτελεί τον κύριο καταναλωτή ενέργειας στην Κύπρο καθώς και το ποσοστό της συνολικής ενεργειακής κατανάλωσης του τομέα αυτού. Το ποσοστό του βιομηχανικού τομέα ανέρχεται στο 21% ενώ οι ενεργειακές καταναλώσεις για τον οικιακό και τον τριτογενή τομέα κυμαίνονται στο 17%.

Ο τομέας του φυσικού αερίου βρίσκεται σε πρωταρχικό στάδιο. Η απαραίτητη νομοθετική και θεσμική προσαρμογή καθώς και η αποδοχή των προνομίων των αντίστοιχων Ευρωπαϊκών οδηγιών έχει προκύψει στο σημείο όπου η εισαγωγή του εν λόγω είδους καυσίμου αποτελεί κεντρικό στοιχείο της ενεργειακής πολιτικής της Κυπριακή Δημοκρατίας. Στα πλαίσια της διαδικασίας αναμένεται η έναρξη λειτουργίας της Δημόσιας Επιχείρησης Φυσικού Αερίου (ΔΕΦΑ) η οποία θα διαχειρίζεται τις εισαγόμενες ποσότητες. Παράλληλα, θετική συμβολή θα έχει εισαγωγή και χρήση του Φυσικού Αερίου στην οικονομία και στο περιβάλλον της Κύπρου, σύμφωνα με τα πρόσφατα δεδομένα και τις πρόσφατες συμβάσεις για την εξόρυξη των αποθεμάτων των κοιτασμάτων υδρογονανθράκων που εντοπίστηκαν στο νοτιοανατολικό μέρος της Κύπρου.

Η συνεισφορά των ανανεώσιμων πηγών ενέργειας (ΑΠΕ) στο ενεργειακό ισοζύγιο της χώρας είναι περίπου της τάξης του 2,4% και προέρχεται, κυρίως, από τη χρήση της ηλιακής ενέργειας και ηλεκτρικής ενέργειας. Η συνεισφορά των άλλων μορφών ΑΠΕ (π.χ. από καύση και χρήση του Φυσικού Αερίου) σήμερα είναι περιορισμένη.

3.1. ΓΕΝΙΚΑ

Η παρούσα περιβαλλοντική μελέτη αποκαλύπτει τις εισηγήσεις και τις εισηγήσεις μέτρων ελαχιστοποίησης των επιπτώσεων από την κατασκευή και

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
λειτουργία Φωτοβολταϊκού Πάρκου στην περιοχή της κοινότητας Σωτήρα Λεμεσού.

Το ΦΒ πάρκο είναι ένα έργο ηλεκτροπαραγωγής με ισχύ 150 kW και για την αδειοδότηση του υπόκειται σύμφωνα με το νόμο (N.140(I)/2005) σε υποχρεωτική εκπόνηση Μελέτης Εκτίμησης Περιβαλλοντικών Επιπτώσεων.

Η Φωτοβολταϊκή τεχνολογία μπορεί να συμβάλει καθοριστικά στη μείωση των προβλημάτων που οφείλονται στην ενεργειακή εξάρτηση αξιοποιώντας τον ήλιο ως ανανεώσιμη πηγή ενέργειας. Οι περιβαλλοντικές επιπτώσεις από τέτοια έργα είναι περιορισμένες με κυριότερες τη δέσμευση γης και την ενδεχόμενη αισθητική όχληση.

Το έργο αυτό αναμένεται να συνεισφέρει στην επίτευξη των εθνικών στόχων για την αύξηση του ποσοστού συνεισφοράς των ΑΠΕ στο ενεργειακό ισοζύγιο και τη μείωση των εκπομπών του διοξειδίου του άνθρακα.

3.2. ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΣΤΗΝ ΚΥΠΡΟ

Η παραγωγή ηλεκτρικού ρεύματος στην Κύπρο στηρίζεται σχεδόν εξ’ολοκλήρου στην καύση ορυκτών καυσίμων και κυρίως Μαζούτ. Η Αρχή Ηλεκτρισμού Κύπρου (Α.Η.Κ) αποτελεί στο παρόν στάδιο το μεγαλύτερο ηλεκτροπαραγωγό στην Κύπρο διαθέτοντας συνολικά τρεις Ηλεκτροπαραγωγούς Σταθμούς. Οι τεχνολογίες που χρησιμοποιούνται για ηλεκτροπαραγωγή είναι Ατμοηλεκτρικές Μονάδες και Αεροστρόβιλοι.

Στον πίνακα που ακολουθεί παρουσιάζονται λεπτομέρειες για τους τρεις Ηλεκτροπαραγωγούς Σταθμούς καθώς και τη συνεισφορά τους στην παραγωγή ηλεκτρικής ενέργειας για το έτος 2007.

Πίνακας 1 Ηλεκτροπαραγωγοί Σταθμοί της Αρχής Ηλεκτρισμού Κύπρου [1].

<table>
<thead>
<tr>
<th>ΠΑΡΑΓΩΓΗ</th>
<th>Συνολική παραγωγή ηλεκτρικής ενέργειας</th>
<th>2020</th>
<th>2009</th>
<th>% Αύξηση (Μείωση)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Εγκατεστημένη ισχύς</td>
<td>MW</td>
<td>1 438</td>
<td>1 388</td>
<td>3,6</td>
</tr>
<tr>
<td>Φορτίο αιχμής</td>
<td>MW</td>
<td>1 148</td>
<td>1 098</td>
<td>4,6</td>
</tr>
<tr>
<td>Θερμική αποδοτικότητα παραγωγής</td>
<td>%</td>
<td>36,1</td>
<td>33,7</td>
<td>7,1</td>
</tr>
</tbody>
</table>

ΣΤΑΘΜΟΣ ΒΑΣΙΛΙΚΟΥ

Ο Ηλεκτροπαραγωγός Σταθμός Βασιλικού, με εγκαταστημένη ισχύ 648 MW (3 X 130 MW Ατμοστρόβιλοι, 220 MW Μονάδα Συνδυασμένου Κύκλου και 38 MW Αεροστρόβιλος), παρήγαγε κατά το 2010 το 60,77% (3 162 958 MWh) της συνολικής ηλεκτρικής ενέργειας που παρήχθη από τους Ηλεκτροπαραγωγούς Σταθμούς της Αρχής, ενώ κατά την ίδια περίοδο, εξήγαγε το 60,78% (2 999 616 MWh) της συνολικής ηλεκτρικής ενέργειας που εξήχθη από τους Ηλεκτροπαραγωγούς Σταθμούς της Αρχής.

Ο θερμικός βαθμός απόδοσης των Ατμοστροβίλων για μονάδες παραγωγής ανήλθε στο 38,46%, της ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Μονάδας Συνδυασμένου Κύκλου σε 47,95% και ο αντίστοιχος θερμικός βαθμός απόδοσης του Αεριοστρόβιλου ανήλθε στο 22,73%.

Επίσης ο θερμικός βαθμός απόδοσης των Ατμοστρόβιλων για μονάδες εξαγωγής ανήλθε στο 36,04%, της Μονάδας Συνδυασμένου Κύκλου σε 46,89% και ο αντίστοιχος θερμικός βαθμός απόδοσης του Αεριοστρόβιλου ανήλθε στο 19,64%.

Επίσης σε μελλοντικό στάδιο προγραμματίζεται η εγκατάσταση στον Ηλεκτροπαραγωγό Σταθμό Βασιλικού, δύο επιπρόσθετων Μονάδων Συνδυασμένου Κύκλου ισχύος 220MW καθεμιά.

ΣΤΑΘΜΟΣ ΔΕΚΕΛΕΙΑΣ

Ο Ηλεκτροπαραγωγός Σταθμός Δεκέλειας, με εγκαταστημένη ισχύ 460 MW (6 x 60MW Ατμοστρόβιλοι και 100 MW Μονάδες Εαυτερικής Καύσης), παρήγαγε κατά το 2010 το 34,25% (1 782 692 MWh) της συνολικής ηλεκτρικής ενέργειας που παρήχθη από τους Ηλεκτροπαραγωγούς Σταθμούς της Αρχής, ενώ κατά την ίδια περίοδο, εξήγαγε το 34,35% (1 695 224 MWh) της συνολικής ηλεκτρικής ενέργειας που εξήχθη από τους Ηλεκτροπαραγωγούς Σταθμούς της Αρχής.

Ο θερμικός βαθμός απόδοσης των Ατμοστρόβιλων για μονάδες παραγωγής ανήλθε στο 30,27% και ο αντίστοιχος θερμικός βαθμός απόδοσης των Μονάδων Εσωτερικής Καύσης ανήλθε στο 41,75%.

O θερμικός βαθμός απόδοσης των Ατμοστρόβιλων για μονάδες εξαγωγής ανήλθε στο 28,64% και ο αντίστοιχος θερμικός βαθμός απόδοσης των Μονάδων Εσωτερικής Καύσης ανήλθε στο 40,70%.

ΣΤΑΘΜΟΣ ΜΟΝΗΣ

Ο Ηλεκτροπαραγωγός Σταθμός Μονής, με εγκαταστημένη ισχύ 330 MW (6 x 30MW Ατμοστρόβιλοι και 4 x 37,5 MW Αεριοστρόβιλοι), παρήγαγε κατά το 2010 το 4,98% (259 247 MWh) της συνολικής ηλεκτρικής ενέργειας που παρήχθη από τους Ηλεκτροπαραγωγούς Σταθμούς της Αρχής, ενώ κατά την ίδια περίοδο, εξήγαγε το 4,87% (240 675 MWh) της συνολικής ηλεκτρικής ενέργειας που εξήχθη από τους Ηλεκτροπαραγωγούς Σταθμούς της Αρχής.

Ο θερμικός βαθμός απόδοσης των Ατμοστρόβιλων για μονάδες παραγωγής ανήλθε στο 24,56% και ο αντίστοιχος θερμικός βαθμός απόδοσης των Αεροστρόβιλων ανήλθε στο 22,56%.

Επίσης ο θερμικός βαθμός απόδοσης των Ατμοστρόβιλων για μονάδες εξαγωγής ανήλθε στο 22,77% και ο αντίστοιχος θερμικός βαθμός απόδοσης των Αεροστρόβιλων ανήλθε στο 21,61%.

Στην Κύπρο, λόγω του Ενεργειακά Απομονωμένου Συστήματος και της απουσίας Ενεργειακών Διασυνδέσεων (αγωγοί πετρελαίου, αγωγοί φυσικού αερίου, καλώδια μεταφοράς ηλεκτρικής ενέργειας) με άλλα κράτη, υπάρχει μεγάλος βαθμός εξάρτησης από εισαγωγές ορυκτών καυσίμων.

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Συγκεκριμένα, περισσότερο από το 99% της ηλεκτρικής ενέργειας που καταναλώνεται στην Κύπρο παράγεται από τα εισαγόμενα ορυκτά καύσιμα. Συνεπώς, οι ετήσιες εκπομπές διοξειδίου του άνθρακα (CO₂) είναι πολύ μεγάλες. Οι εκπομπές διοξειδίου του άνθρακα για το έτος 2009 στην Κύπρο από το τομέα ηλεκτροπαραγωγής (σταθμοί ΑΗΚ) εκτιμώνται σε 4.084.000 τόνους.

ΕΓΧΩΡΙΑ ΚΑΤΑΝΑΛΩΣΗ

Στο παρακάτω διάγραμμα παρουσιάζεται η κατανομή της εγχώριας κατανάλωσης ενέργειας ανά τομέα. Το μεγαλύτερο μερίδιο αποδίδεται στον τομέα των μεταφορών (54%) ενώ το 23% καταναλώνεται στον βιομηχανικό τομέα, το 13% στον οικιακό, το 8% στον τομέα των υπηρεσιών και το υπόλοιπο 2% στον γεωργικό τομέα.

![Diagram](image)

Διάγραμμα: 1 Κατανομή εγχώριας κατανάλωσης ανά τομέα

Όσον αφορά την κατανομή της εγχώριας κατανάλωσης ανά καύσιμο παρατηρείται ότι η συνεισφορά των πετρελαιοειδών κυμαίνεται σε πολύ υψηλό ποσοστό (75%), κυρίως λόγω του μεγάλου μερίδιου του τομέα των μεταφορών. Η ηλεκτρική ενέργεια (20%), οι ΑΠΕ (3%) και τα στερεά καύσιμα (άνθρακας, 2%) συνεισφέρουν σε σχετικά περιορισμένο βαθμό. Το σημαντικότερο μερίδιο της ηλιακής ενέργειας, το οποίο χρησιμοποιείται κυρίως για την θέρμανση νερού στον οικιακό, εμπορικό και τουριστικό τομέα, αποτελεί μία ιδιαίτερητη της κυπριακής ενεργειακής αγοράς σε σχέση με τα ισχύοντα σε ευρωπαϊκό επίπεδο.
ΤHEMA ΠΡΩΤΟΠΑΠΑ ΜΗΤΡΟΥ

«ΜΕΛΕΤΗ ΕΚΤΙΜΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ»

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ

3.3 ΚΑΤΑΝΑΛΩΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΟΝ ΟΙΚΙΑΚΟ ΤΟΜΕΑ

Στον οικιακό τομέα η κύρια μορφή ενέργειας που καταναλώνεται είναι ο ηλεκτρισμός σε ποσοστό 47% ενώ στο διάγραμμα που ακολουθεί παρουσιάζεται η κατανομή ανά είδος καύσιμου που χρησιμοποιείται για την κάλυψη των ενεργειακών αναγκών του τομέα.

Διάγραμμα: 3 Κατανάλωση ενέργειας στον οικιακό τομέα ανά προϊόν
Οι κύριες τελικές χρήσεις είναι η θέρμανση χώρων, η ψύξη χώρων, η θέρμανση νερού και οι ηλεκτρικές συσκευές. Στο διάγραμμα που ακολουθεί παρουσιάζεται η κατανομή της καταναλισκόμενης ενέργειας στον οικιακό τομέα ανά τελική χρήση.

Θέρμανση χώρων

Το 60% περίπου των αναγκών θέρμανσης χώρων καλύπτεται από την καύση πετρελαίου ντίζελ, την άμεση χρήση ηλεκτρικής ενέργειας το 22%, την καύση υγραερίου (LPG) το 9% και τις διάφορες μορφές βιομάζας το 5%. Τα περισσότερα νοικοκυριά στην Κύπρο είναι εξοπλισμένα με κεντρικά συστήματα θέρμανσης (καυστήρες ντίζελ θέρμανσης).

Ψύξη χώρων

Η ψύξη χώρων επιτυγχάνεται στην πλειοψηφία των περιπτώσεων από κλιματιστικά συστήματα χωριστών μονάδων (split units). Το μεγαλύτερο μέρος της ενέργειας καταναλώνεται κατά τη διάρκεια των καλοκαιρινών μηνών (από Μάιο έως Οκτώβριο).

Θέρμανση νερού

Όσον αφορά τις ανάγκες για την θέρμανση νερού, η εκτεταμένη χρήση παθητικών ηλιακών συστημάτων (ηλιακοί θερμοσίφωνες) καθιστά την Κύπρο μία από τις πρωτοπόρες χώρες σε εγκατεστημένα συστήματα συλλογής ηλιακής ενέργειας με 0,86 τετρ. μέτρα επιφάνειας συλλογής ανά κάτοικο.

Ηλεκτρικές συσκευές

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Ηλεκτρική ενέργεια καταναλώνεται κυρίως από ηλεκτρικές συσκευές παρά για την θέρμανση χώρων. Η κατανάλωση ηλεκτρικής ενέργειας έχει αυξηθεί τα τελευταία χρόνια στον οικιακό τομέα κυρίως λόγω της αύξησης του πληθυσμού και της αναβάθμισης του επιπέδου ζωής.

3.4 ΚΑΤΑΝΑΛΩΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΟΝ ΤΡΙΤΟΓΕΝΗ ΤΟΜΕΑ

Οι ακόλουθοι υποτομείς συμπεριλαμβάνονται στον τριτογενή τομέα:

- Τουριστικός τομέας
- Εμπορικός τομέας
- Τομέας κοινής υφήλιας

Η εκτεταμένη κατανάλωση ηλεκτρικής ενέργειας χαρακτηρίζει συνολικά τον τριτογενή τομέα. Στο διάγραμμα που ακολουθεί παρουσιάζεται η κατανομή της καταναλισκόμενης ενέργειας στις τελικές χρήσεις του τριτογενή τομέα.

![Diatragma: Κατανάλωση ενέργειας στον τριτογενή τομέα](attachment:diagram.png)

Διάγραμμα: 5 Κατανάλωση ενέργειας στον τριτογενή τομέα

Τουριστικός τομέας

Ο τουριστικός τομέας στην Κύπρο είναι ιδιαίτερης σημασίας για την οικονομία του κράτους καθώς αποτελεί τη «βαριά βιομηχανία» του νησιού. Τις δύο τελευταίες τουριστικές περιόδους παρατηρήθηκε μία μικρή κάμψη στο τουριστικό ρεύμα η οποία ακολούθησε μία συνεχή αυξητική τάση που καλύπτει περίοδο πολλών ετών.

Οι κύριες τελικές χρήσεις ενέργειας στον τουριστικό τομέα είναι η θέρμανση/ψύξη χώρων, θέρμανση νερού και οι ηλεκτρικές χρήσεις.
Στο ακόλουθο διάγραμμα παρουσιάζεται η κατανομή των τελικών χρήσεων ενέργειας στον τουριστικό τομέα.

Διάγραμμα:6 Κατανομή των τελικών χρήσεων ενέργειας στον τουριστικό τομέα

Θερμό νερό απαιτείται για πολυάριθμες χρήσεις στον τουριστικό τομέα και κυρίως όσον αφορά το συστήματα υγιεινής και εστίασης. Η πλειοψηφία των ξενοδοχείων και των μικρότερης κλίμακας μονάδων (περίπου το 50%) είναι εξοπλισμένα με ηλιακά συστήματα καύσης πετρελαίου ντίζελ και ηλεκτρικών αντιστάσεων.

Η ηλεκτρική ενέργεια χρησιμοποιείται κυρίως για ηλεκτρικές συσκευές και για την ψύξη χώρων. Η ζήτηση ηλεκτρικής ενέργειας προκύπτει κυρίως από τον φωτισμό, την προετοιμασία γευμάτων, την ψύξη τροφίμων, την επεξεργασία υγρών αποβλήτων, τα κυκλώματα καθαρισμού νερού δεξαμενών κολύμβησης, κ.ά.

3.5 ΚΑΤΑΝΑΛΩΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΟΝ ΒΙΟΜΗΧΑΝΙΚΟ ΤΟΜΕΑΣ

Τρεις υπό-τομείς του βιομηχανικού τομέα διατηρούν τα σκήπτρα της ενεργειακής κατανάλωσης: Ο πρώτος είναι η βιομηχανία παραγωγής τσιμέντου (κυρίως άνθρακας και μαζούτ αλλά και μικρές ποσότητες βιομάζας) ο οποίος καταναλώνει το 50%, ο δεύτερος είναι ο τομέας παραγωγής τροφίμων, βιομηχανία η οποία καταναλώνει το 22% (πετρέλαιο ντίζελ, ελαφρό μαζούτ) και ο τρίτος είναι ο τομέας παραγωγής δοκιμών υλικών στον οποίον καταναλώνεται το υπόλοιπο 10% της ενέργειας που καταναλώνεται συνολικά από τον βιομηχανικό τομέα.

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
3.6 ΚΑΤΑΝΑΛΩΣΗ ΕΝΕΡΓΕΙΑΣ ΣΤΟΝ ΤΟΜΕΑ ΤΩΝ ΜΕΤΑΦΟΡΩΝ

Στην Κύπρο το μερίδιο στην συνολική κατανάλωση ενέργειας από τον τομέα των μεταφορών ανέρχεται στο 50% (ανώτερο του αντίστοιχου ποσοστού που αναφέρεται συνολικά στην Ευρωπαϊκή Ένωση – περίπου 30%). Τα τελευταία χρόνια παρατηρείται μια σαφής αυξητική τάση στο εν λόγω ποσοστό κυρίως λόγω της αύξησης της κατανάλωσης ενέργειας από τον τομέα οδικών μεταφορών. Οι οδικές μεταφορές αποτελούν τον κυρίοτερο και ταχύτερα αναπτυσσόμενο καταναλωτή ενέργειας καθώς τα καύσιμα που καταναλώνονται στον συγκεκριμένο υπό τομέα

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
αντιστοιχούν σε ποσοστό 60% των συνολικών ποσοτήτων. Στο διάγραμμα που ακολουθεί
παρουσιάζεται η ετήσια κατανάλωση ανά είδος των καυσίμων που καταναλώνονται στον τομέα των
μεταφορών για την περίοδο 1995-2006.

3.7 ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΑΠΟ ΦΩΤΟΒΟΛΤΑΙΚΑ ΣΤΗΝ ΚΥΠΡΟ

Η αξιοποίηση της ηλιακής ενέργειας στην Κύπρο είναι πολύ υποσχόμενη λόγω του γεγονότος ότι
όλες οι περιοχές της Κύπρου έχουν μεγάλη διάρκεια ηλιοφάνειας σε σύγκριση με πολλές χώρες.

Στις πεδινές περιοχές ο μέσος αριθμός ωρών ηλιοφάνειας για ολόκληρο το χρόνο είναι 75% των
ωρών που ο ήλιος είναι πάνω από τον ορίζοντα. Σ’ άλλη τη διάρκεια του καλοκαιριού η ηλιοφάνεια
eίναι κατά μέσο όρο 11.5 ώρες την ημέρα, ενώ στους μήνες Δεκέμβρη και Γενάρη που έχουν την πιο
μεγάλη νέφωση η διάρκεια της ηλιοφάνειας ελαττώνεται μόνο στις 5.5 ώρες την ημέρα. Η μέση
ημερήσια ηλιακή ακτινοβολία σε οριζόντιο επίπεδο στην Κύπρο εκτιμάται σε 5,4 kWh/m².

Όσον αφορά τα φωτοβολταϊκά, υπάρχει τα τελευταία χρόνια μία αυξητική τάση χρησιμοποίησης
tους από φυσικά και νομικά πρόσωπα, κυρίως από φυσικά πρόσωπα. Αν και παρουσιάζουν υψηλό
kόστος που θα ήταν αποτρεπτικός παράγοντας για την αξιοποίησή τους, επιδοτούνται από τα
σχέδια χορηγιών και επιδοτήσεων που δίνονται από το Ειδικό ταμείο ΑΠΕ και ΕΞΕ.

Στην Κύπρο, το πρώτο Φωτοβολταϊκό Σύστημα ισχύος 4,84kW συνδέθηκε στις 17/02/2005. Η
συνολική παραγωγή ηλεκτρικής ενέργειας από φωτοβολταϊκά συστήματα που είναι συνδεδεμένα
με το δίκτυο από τις 17/02/2005 έως 31/1/2011 ανέρχεται στις 10.931.561 kWh [1].

Η εγκατεστημένη ισχύς των φωτοβολταϊκών συστημάτων ενωμένα με το σύστημα διανομής της
ΑΗΚ ανήλθε στα 5,66 MW στο τέλος Δεκεμβρίου 2010 [1]. Η συνολική εγκατεστημένη ισχύς
των φωτοβολταϊκών συστημάτων (μη ενωμένα με το δίκτυο) ανέρχεται στην Υπηρεσία Ενέργειας (μέχρι το τέλος του 2010) ανήλθε στα 0,73 MW. Στον πίνακα που ακολουθεί
παρουσιάζεται η συνολική εγκατεστημένη ισχύς φωτοβολταϊκών συστημάτων (ενωμένων και μη ενωμένων
στο δίκτυο) στην Κύπρο για την περίοδο 2003-2010.
Εικόνα 2: Συνολική εγκατεστημένη ισχύς φωτοβολταϊκών συστημάτων στην Κύπρο για την περίοδο 2003-2010.

3.8. Ευρωπαϊκό θεσμικό πλαίσιο για την ενέργεια

Τις τελευταίες δεκαετίες, η Ευρωπαϊκή Ένωση έχει επικεντρώσει την ενίσχυση των ενεργειακών συστημάτων, την προστασία του περιβάλλοντος, την ανταγωνιστικότητα της ευρωπαϊκής οικονομίας και την τοπική/περιφερειακή ανάπτυξη.

Σήμερα, περίπου το 50% των ενεργειακών αναγκών των κρατών – μελών της ΕΕ καλύπτεται από εισαγόμενη ενέργεια. Στην Κύπρο το ποσοστό αυτό είναι περίπου 97%.

Η κατανάλωση ενέργειας αυξάνεται κατά 1-2% κάθε χρόνο. Η αυξητική αυτή τάση δείχνει ότι οι εκπομπές CO2 το 2030 θα είναι κατά 18% υψηλότερες από το αντίστοιχο επίπεδο εκπομπών του 1990 εάν δεν ληφθούν οποιαδήποτε μέτρα.

Ακολούθως της απόφασης του Ευρωπαϊκού Συμβουλίου στις 17/12/2008, εγκρίθηκε το νέο “νομοθετικό πακέτο” για την ενέργεια και την κλιματική αλλαγή τον Δεκέμβριο του 2008. Συνοπτικά οι νέοι φιλόδοξοι στόχοι της ΕΕ που θα πρέπει να εκπληρωθούν ως το 2020 έχουν ως ακολούθως:

• μείωση κατά 20% των εκπομπών αερίων του θερμοκηπίου (σε σχέση με τα επίπεδα του 1990)
• αύξηση κατά 20% του μερίδιο της ενέργειας που παράγεται από ανανεώσιμες πηγές
• αύξηση κατά 10% της χρήσης των βιοκαυσίμων.

Σύμφωνα με την Οδηγία 2009/28/ΕΚ σχετικά με την προώθηση της χρήσης ενέργειας από ΑΠΕ και την τροποποίηση και τη συνακόλουθη κατάργηση των Οδηγιών 2001/77ΕΚ και 2003/30/ΕΚ, ο στόχος της αύξησης της χρήσης ΑΠΕ (20%) και των βιοκαυσίμων (10%) μέχρι το 2020 είναι δεσμευτικός για τα κράτη μέλη.

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
3.9. Σχέδιο Χορηγιών ΥΕΒΤ 2009-2013

Με απόφαση Υπουργικού Συμβουλίου με ημερομηνία 30/12/2008 και τελική έγκριση της Ευρωπαϊκής Επιτροπής ανακοινώθηκαν τα Σχέδια Χορηγίων 2009-20013 (έναρξη ισχύος Δευτέρα 20/07/2009) για ενθάρρυνση της ηλεκτροπαραγωγής από μεγάλα εμπορικά αιολικά, ηλιοθερμικά και φωτοβολταϊκά συστήματα και αξιοποίηση βιομάζα.

Σύμφωνα με το Σχέδιο Χορηγιών(μέχρι την ημερομηνία ετοιμασίας αυτής της μελέτης), η συνολική τιμή πώλησης της παραγόμενης kWh από φωτοβολταϊκά συστήματα δυναμικότητας από 21 KWμέχρι 150KW θα είναι €0,31/kWh.

Πίνακας 2 Εγκατεστημένη ισχύς ανά τεχνολογία ανανεώσιμης πηγής ενέργειας [Πηγή: Υπηρεσία Ενέργειας]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Φωτοβολταϊκά (MW)</td>
<td>0,155</td>
<td>0,423</td>
<td>0,266</td>
<td>0,746</td>
<td>1,089</td>
<td>6,951</td>
<td>9,629</td>
</tr>
<tr>
<td>Βιομάζα (MW)</td>
<td>-</td>
<td>-</td>
<td>0,250</td>
<td>3,060</td>
<td>0,245</td>
<td>6,000</td>
<td>9,555</td>
</tr>
<tr>
<td>Αιολικά (MW)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>124</td>
<td>124</td>
</tr>
</tbody>
</table>

Σύμφωνα με το Εθνικό Σχέδιο Δράσης για την προώθηση της Ενέργειας που παράγεται από Ανανεώσιμες Πηγές, οι εκτιμήσεις για την εγκατεστημένη ισχύ Φ/Β για την περίοδο 2010-2020 δίνονται παρακάτω πίνακα:

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Εικόνα 3 Πλάνο ανάπτυξης Ανανεώσιμων Πηγών Ενέργειας στην Κύπρο [Πηγή: Υπηρεσία Ενέργειας]
4. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΤΟΥ ΕΡΓΟΥ

4.1. ΠΕΡΙΛΗΨΗ ΚΕΦΑΛΑΙΟΥ

Φωτοβολταϊκά πλαίσια συνδεδεμένα μεταξύ τους θα αποτελούν το ΦΒ πάρκο συνολικής ισχύς 150 kW το οποίο θα αξιοποιεί την ηλιακή ακτινοβολία για την παραγωγή ηλεκτρισμού και την διάθεση του στο δίκτυο. Η περιοχή μελέτης βρίσκεται εντός των διοικητικών ορίων της κοινότητας. Συνήθως όπου υπάρχει οδική πρόσβαση και δυνατότητα σύνδεσης του ΦΒ πάρκου με υφιστάμενη γειτονική γραμμή μεταφοράς. Η υλοποίηση του έργου αναμένεται να ολοκληρωθεί εντός του 2012 αφού εξασφαλιστούν οι σχετικές άδειες. Κατά τη λειτουργία του έργου είναι απαραίτητη ποσότητα νερού για τον καθαρισμό των πλαισίων οι οποίοι θα εξασφαλίζεται από περιοδικές επισκέψεις στο πάρκο με βυτοφόρο.

4.2. ΣΚΟΠΟΣ ΤΟΥ ΕΡΓΟΥ

Σκοπός του προτεινόμενου έργου είναι η παραγωγή ηλεκτρισμού από μία ανανεώσιμη πηγή ενέργειας (ηλιακή ενέργεια) και η πώληση του στο δίκτυο ηλεκτροδότησης της Κύπρου. Η παραγωγή ηλεκτρικής ενέργειας θα επιτυγχάνεται από σειρά φωτοβολταϊκών πλαισίων.

4.3. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΕΡΓΟΥ

Τα φωτοβολταϊκά συστήματα έχουν τη δυνατότητα της απευθείας μετατροπής της ηλιακής ενέργειας σε ηλεκτρική. Η βασική δομική μονάδα κάθε ΦΒ συστήματος είναι το φωτοβολταϊκό στοιχείο. Το υλικό το οποίο χρησιμοποιείται για την κατασκευή των ΦΒ στοιχείων είναι το πυρίτιο. Ομάδες ΦΒ στοιχείων, ηλεκτρικά συνδεδεμένες, διαμορφώνουν το ΦΒ πλαίσιο. Το ΦΒ πάρκο αποτελείται από ΦΒ πλαίσια συνδεδεμένα μεταξύ τους.

Σε ένα ΦΒ πλαίσιο τα στοιχεία είναι τοποθετημένα ανάμεσα σε ανθεκτική διαφανή πλαστική ύλη και στην εμπρός πλευρά τοποθετείται γυαλί ειδικών προδιαγραφών.

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Το σημαντικότερο από τα χαρακτηριστικά του ΦΒ πλαίσιο είναι η ισχύ αιχμής (με μονάδα το Watt peak ή Wp), η οποία εκφράζει την παραγόμενη ηλεκτρική ισχύ, όταν το ΦΒ εκτεθεί σε ηλιακή ακτινοβολία 1kW/m² και σε θερμοκρασία 25 °C.

Η συνολική εγκατεστημένη ισχύς του ΦΒ πάρκου είναι 150 kW και αποτελείται από:

- Περιφραγμένο χώρο
- 576 Φωτοβολταϊκά πλαίσια των 260 Wp στερεωμένα σε βάσεις και τοποθετημένα σε σειρές με άδειες ιχνηλάτησης της πορείας του ήλιου (trackers).
- 12 μικροί Μετατροπείς (inverter) ενσωματωμένοι στα πλαίσια και καλωδίωση των πλαίσιων.
- Υποστατικό Μετρητή Α.Η.K.
- Βοηθητικό υποστατικό εγκαταστάσεων ΦΒ πάρκου

Οι βάσεις των φωτοβολταϊκών θα είναι ανοξείδωτες μεταλλικές (αλουμίνιο) και θα στερεωθούν στο έδαφος με πέδιλα από οπλισμένο σκυρόδεμα.

Για το προτεινόμενο έργο θα χρησιμοποιηθούν 12 μετατροπείς τάσης KACO 12000XI. Οι τεχνικές προδιαγραφές των inverter περιγράφονται στο παράρτημα 1. ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ ΣΥΣΤΗΜΑΤΟΣ

Τα Φωτοβολταϊκά πλαίσια που θα εγκατασταθούν είναι SUNMATE εισαγωγής της εταιρείας REC EURO POWER SOLUTIONS. Τα πλαίσια είναι Πολυκρυσταλλικά από πυρήνα και με ισχύ ανά πλαίσιο 260Wp. Ο τύπος του πλαίσιου είναι MPE PS 04 Serie και οι τεχνικές προδιαγραφές τους περιγράφονται στο Παράρτημα 1 ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ ΣΥΣΤΗΜΑΤΟΣ

Η χωροθέτηση των εγκαταστάσεων και η λεπτομέρεια της εγκατάστασης των ΦΒ πλαίσιων φαίνονται ΠΑΡΑΡΤΗΜΑ 2 – ΧΩΡΟΘΕΤΗΣΗ‐ΛΕΠΤΟΜΕΡΕΙΕΣ ΕΓΚΑΤΑΣΤΑΣΗΣ..

Στοιχεία Προσδιορισμού Τρόπου Τοποθέτησης Πλαίσιων:

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
- Η ενέργεια που πρέπει να παραχθεί καθορίζει το πλήθος των φωτοβολταϊκών στοιχείων, το μηχανολογικό και ηλεκτρικό-ηλεκτρονικό εξοπλισμό που θα τοποθετηθεί στο σύστημα μας.

- Το περιβάλλον και οι τοπικές καιρικές συνθήκες καθορίζουν τη θέση και τον τρόπο στήριξης.

- Η οικονομική δυνατότητα που έχουμε είναι η αυτή που μας περιορίζει ή μας επιτρέπει να εγκαταστήσουμε ένα ακριβό σύστημα, το οποίο όμως θα αποφέρει καλύτερη απόδοση από ένα οικονομικότερο.

Απεικόνιση Κινήσεων του Ηλίου κατά το Χειμερινό & Εαρινό Ηλιοστάσιο:

Διαγραμματική απεικόνιση της πορείας του Ήλιου (αριστερά Χειμερινό ηλιοστάσιο, δεξιά Καλοκαιρινό ηλιοστάσιο (Λεμεσός)
4.4. ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ

Το προτεινόμενο έργο αποτελείται από τη ΦΒ συστοιχία η οποία μέσω ενός αντιστροφέα (inverter), είναι διασυνδεδεμένη με το ηλεκτρικό δίκτυο. Στην Εικόνα 1 φαίνεται η τυπική συνδεσμολογία ενός ΦΒ συστήματος διασυνδεδεμένου με το δίκτυο.

Εικόνα 1 Τυπική συνδεσμολογία ενός ΦΒ συστήματος διασυνδεδεμένου με το δίκτυο.
4.5. ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΧΩΡΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ ΦΒ ΠΑΡΚΟΥ
Η καταλληλότητα ενός χώρου για εγκατάσταση ΦΒ πάρκου εξαρτάται από τις ακόλουθες παραμέτρους:
• Στοιχεία απόδοσης ηλεκτρικής ενέργειας και κόστους εγκατάστασης
• Προσανατολισμός
• Κλίση του εδάφους
• Εδαφική μορφολογία του οικοπέδου (πχ ρέματα, βράχια κλπ).
• Σε περίπτωση ύπαρξης δέντρων, η αποψίλωση του χώρου για τη βέλτιστη αποδοτικότητα της εγκατάστασης.
• Ύπαρξη γενικότερα εντός ή πλησίον του οικοπέδου στοιχείων που να δημιουργούν σκίαση.
• Διαφοροποίηση του μικροκλίματος στην περιοχή (πχ αυξημένες βροχοπτώσεις λόγω γειτονικού βουνού, αυξημένη υγρασία-ομίχλες λόγω γειτονικού ποταμού, ενδεχόμενη ύπαρξη έλους κλπ).
• Εκτίμηση της δυσκολίας πρόσβασης στο οικόπεδο (κατάσταση δρόμου και απόσταση από την κοντινότερη άσφαλτο) καθώς και ενδεχόμενη κακή κατάσταση του δρόμου πρόσβασης σε περίπτωση κακοκαιρίας.

4.6. ΠΛΕΟΝΕΚΤΗΜΑΤΑ/ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΕΓΚΑΤΑΣΤΑΣΗΣ ΦΒ ΠΑΡΚΟΥ
Τα πλεονεκτήματα εγκατάστασης ΦΒ πάρκου είναι τα ακόλουθα
• Τα ΦΒ συστήματα έχουν αξιόπιστη λειτουργία και μεγάλη διάρκεια ζωής περισσότερη από 25 χρόνια.
• Έχουν ελάχιστο κόστος συντήρησης – Περιοδικός καθαρισμός πλαίσιων από σκόνη.
• Τα ΦΒ πλαίσια λειτουργούν αθόρυβα και δεν έχουν κινούμενα μέρη.
• Με τη λειτουργία του ΦΒ πάρκου αποφεύγεται η χρήση ορυκτών καυσίμων για την παραγωγή ηλεκτρισμού.
• Είναι έργο ηλεκτροπαραγωγής φιλικό προς το περιβάλλον και δεν ρυπάινει συνεισφέροντας στη μείωση των εκπομπών αερίων του θερμοκηπίου.
• Εύκολη εγκατάσταση σε απομονωμένη περιοχή.
• Λειτουργεί ως αποκεντρωμένη μονάδα ηλεκτροπαραγωγής.

Το πιο σημαντικό μειονέκτημα των Φ/Β συστημάτων είναι το κόστος αγοράς τους το οποίο είναι ακόμα υψηλό. Για τον λόγο αυτό τα κράτη μέλη, όπως και η Κύπρος, λειτουργούν σχέδια και παραγωγής ηλεκτρικής ενέργειας για την αγορά και εγκατάστασή τους. Στην Κύπρο από το 2004 εφαρμόζονται Σχέδια Χορηγιών για την επιχορήγηση/επιδότηση επενδύσεων σε Φωτοβολταϊκά συστήματα. Επίσης υπάρχουν αμφιβολίες και απόψεις για την αισθητική τους ύψη. Ωστόσο με την χωροθέτηση τους σε απομακρυσμένες περιοχές περιορίζεται η αισθητική όχληση.
4.7. ΘΕΣΗ ΤΟΥ ΕΡΓΟΥ – ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ

Το Πάρκο φωτοβολταϊκών θα στηθεί στο τεμάχιο 139 Φ53 Σχέδιο 34, το οποίο βρίσκεται στην περιοχή Στερακώ στην Σωτήρα Λεμεσό. Το τεμάχιο αυτό έχει έκταση 17 δεκάρια και 726 τετραγωνικά μέτρα και απέχει από οικιστική ζώνη κατά 1.5 ΚΜ.

Το προαναφερόμενο τεμάχιο βρίσκεται στη Ζ1 πολεοδομική Ζώνη και απέχει από τη Λεμεσό 20 χιλιόμετρα και από την Πάφο 45 χιλιόμετρα. Βρίσκεται στην περιοχή της Σωτήρας, το οποίο είναι κτισμένο στην πλαγιά του βουνού στην περιοχή Στερακώ σε υψόμετρο 390 μέτρων με ανοικτό ορίζοντα στην θάλασσα Ακρωτηρίου.
Πρόσβαση στην περιοχή του τεμαχίου παρέχεται από χωμάτινο δρόμο ο οποίος συνδέει το τεμάχιο με τον κύριο δρόμο Σωτήρας- Σούνιο ο οποίος ερχόμενοι από Λεμεσό περνά και από χωριά Καντού, Σούνι, Κυβίδες, Άγιος Αμβρόσιος και την έξοδο προς Πάχνα

Η ευρύτερη περιοχή του έργου παρουσιάζεται σχηματικά στην δορυφορική απεικόνιση που ακολουθεί:

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150ΚΩ ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Στην πιο κάτω φωτογραφεία φαίνεται ο χωμάτινος δρόμος που κάνει το τεμάχιο προσβάσιμο.

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
4.8ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΚΑΤΑΣΚΕΥΗΣ

Το προτεινόμενο έργο αναμένεται να ακολουθήσει το χρονοδιάγραμμα που φαίνεται πιο κάτω:

<table>
<thead>
<tr>
<th>ΜΗΝΕΣ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Εκτόνηση ΜΕΕΠ. (Μόνο για πάρκα μεγαλύτερα από 100KWP)</td>
<td></td>
</tr>
<tr>
<td>Αίτηση στην ΑΗΚ για προκαταρτική εκτίμηση κόστους διασύνδεσης</td>
<td></td>
</tr>
<tr>
<td>Υποβολή αίτησης για Πολεοδομική άδεια. Εξασφάλιση έγκρισης</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Υποβολή αίτησης στη ΡΑΕΚ. Εξασφάλιση έγκρισης</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Υποβολή ΜΕΕΠ στην Περιβαλλοντική Αρχή. Εξασφάλιση έγκρισης</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Αίτηση Άδειας οικοδομής. Εξασφάλιση έγκρισης</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Αίτηση στην ΑΗΚ για τεχνικούς όρους διασύνδεσης. Εξασφάλιση και αποδοχή όρων</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Αίτηση στο ΥΕΒ&Τ για παροχή χορηγίας. Εξασφάλιση έγκρισης</td>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Εργασίες διαμόρφωσης χώρου και περίφραξη</td>
<td></td>
</tr>
<tr>
<td>Εγκατάσταση ΦΒ πλαισίων και καλωδίων.</td>
<td></td>
</tr>
<tr>
<td>Εργασίες σύνδεσης ΦΒ πάρκου με δίκτυο και σύναψη σύμβασης με ΑΗΚ</td>
<td></td>
</tr>
<tr>
<td>Έναρξη λειτουργίας</td>
<td></td>
</tr>
<tr>
<td>Έναρξη παροχής επιδότησης</td>
<td></td>
</tr>
</tbody>
</table>
4.9. ΝΟΜΟΘΕΤΙΚΕΣ ΡΥΘΜΙΣΕΙΣ ΤΟΥ ΕΡΓΟΥ – ΣΥΝΔΕΣΗ ΜΕ ΤΟ ΔΙΚΤΥΟ

Πολεοδομικοί περιορισμοί

Σύμφωνα με τον περί Πολεοδομικών και Χωροταξίας Νόμο (Εντολή αρ. 2 του 2006), αυθύπαρκτες φωτοβολταϊκές εγκαταστάσεις για την παραγωγή και πώληση ηλεκτρικής ενέργειας είναι δυνατό να επιτραπούν σε κατάλληλη, κατά την κρίση της Πολεοδομικής Αρχής περιοχή, νοσομένου ότι ικανοποιούνται τα εξής κριτήρια:
- είναι εκτός ήδη καθορισμένου Ορίου Ανάπτυξης.
- είναι εκτός της λωρίδας κατάληψης εγγεγραμμένου ή υπό εγγραφή δημόσιου ή δασικού δρόμου, δρόμου σχεδίου αναδασμού, μονοπατιού ή εγγεγραμμένου δικαιώματος διόδου.
- δεν εμπίπτουν σε αρχαιολογικό χώρο ή αρχαίο μνημείο Πίνακα Α ή Β.
- δεν εμπίπτουν σε Κρατικό Δάσος.
- δεν εμπίπτουν σε καθορισμένες περιοχές προστασίας της φύσης.

Μελέτη Περιβαλλοντικών Επιπτώσεων

Το προτεινόμενο έργο σύμφωνα με το Πρώτο Παράρτημα (άρθρο 9) του νόμου Ν.140(ΙΙ)/2005 εμπίπτει στην κατηγορία επενδύσεων στην κατηγορία επενδύσεων NMF (Μεγάλα Εμπορικά Φωτοβολταϊκά συστήματα ηλεκτροπαραγωγής).

Σχέδιο χορηγιών για ενθάρρυνση της Ηλεκτροπαραγωγής από μεγάλα ΦΒ συστήματα

To προτεινόμενο έργο εμπίπτει στην κατηγορία καθαριότητας ΕΝΦ (Μεγάλα Εμπορικά Φωτοβολταϊκά συστήματα ηλεκτροπαραγωγής).

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Οι τιμές αυτές βασίζονται στο ότι σύμφωνα με τα δεδομένα ηλιακού δυναμικού της Μετεωρολογικής Υπηρεσίας Κύπρου και με βάση τα πορίσματα σχετικών μελετών, ένα πολύ-κρυσταλλικό ή και μόνοκρυσταλλικό φωτοβολταϊκό σύστημα ονομαστικής ισχύος ενός κιλοβάτ (1000Wp=1Kwp), εγκατεστημένο σε παραλιακή περιοχή της Κύπρου, με γωνία πλασίων 27° και κατεύθυνση ακριβώς Νότια, με ακίνητα πλαίσια (κατά την διάρκεια όλου του χρόνου), θα παράγει περισσότερο από 1500KWh τον χρόνο, σαν μέσον όρο των πρώτων 20 χρόνων λειτουργίας του [2].

Αγορά ηλεκτρικής ενέργειας από ΑΗΚ
Η ΑΗΚ αναλαμβάνει να αγοράζει την ηλεκτρική ενέργεια που παράγεται από ΑΠΕ στις πιο κάτω διατιμήσεις νοουμένου ότι ικανοποιούνται οι πιο κάτω προϋποθέσεις:

• Θα ικανοποιούνται οι τεχνικές προδιαγραφές που καθορίζονται στην σύμβαση του παραγωγού με την ΑΗΚ. Η μέτρηση θα γίνεται στο σημείο σύνδεσης με το δίκτυο της ΑΗΚ.
• Θα υπογράφεται σύμβαση αγοράς με την ΑΗΚ, εικοσαετούς διάρκειας. Η σύμβαση θα μπορεί να ανανεώνεται μετά το πέρας των πρώτων 20 χρόνων για περιόδους διάρκειας 5 χρόνων, εφόσον το ζητήσει ο συμβαλλόμενος, αλλά με την ισχύ σύστημα τότε διατήμηση αγοράς ηλεκτρικής ενέργειας από ΑΠΕ. (Χωρίς οποιαδήποτε επιδότηση από το Ειδικό Γαμείο ΑΠΕ).
• Αποδοχή της τάσης και του τρόπου σύνδεσης των εγκαταστάσεων του ενδιαφερόμενου με το δίκτυο μεταφοράς ή διανομής ανάλογα με την περίπτωση όπως αυτοί θα καθορίζονται μετά από τεχνο-οικονομική μελέτη σε κάθε περίπτωση.
• Νοείται ότι, οι παραγωγοί ηλεκτρισμού από ΑΠΕ, θα δύνανται να χρησιμοποιήσουν την ηλεκτρική ενέργεια που παράγουν για κάλυψη των δικών τους αναγκών και να πωλούν τυχόν πλέον/σα στην ΑΗΚ ή άλλο μη οικιστικό φορέα βάση του περί Επιλέγοντα Καταναλωτή Διατάγματος του 2004, δυνάμει του άρθρου 44 των «περί Ρύθμισης της Αγοράς Ηλεκτρισμού Νόμων του 2003 έως 2006» [2].

Διαδικασία σύνδεσης με το Δίκτυο
• Προτού συμβληθούν με την Αρχή, όλοι οι αιτητές θα πρέπει να υποβάλουν αίτηση στην ΑΗΚ ή στον διαχειριστή του δικτύου, ανάλογα με την δυναμικότητα και άλλα χαρακτηριστικά της προτεινόμενης μονάδας, σύμφωνα με τους εκάστοτε εν ισχύ Κανόνες Μεταφοράς και Διανομής. Η αίτηση θα περιλαμβάνει τεχνικά στοιχεία παραγωγής ηλεκτρισμού από ΑΠΕ (τάση, ισχύ, συχνότητα κτλ), την τοποθεσία της εγκατάστασης και τοπογραφικό σχέδιο και τα στοιχεία και διεύθυνση του αιτητή.
• Το κόστος για την επέκταση, ενίσχυση, και σύνδεση του δικτύου της Αρχής με τις εγκαταστάσεις του αιτητή, περιλαμβανομένου και του μετρητή, θα υπολογίζονται βάσει της εκάστοτε πολιτικής χρέωσης και θα κατανέμονται σύμφωνα με τους εν ισχύ Κανονισμούς.
• Οι εγκαταστάσεις του αιτητή θα πρέπει να πληρούν τις τεχνικές προδιαγραφές της Αρχής και να τυγχάνουν της έγκρισης της κατά την επιθεώρηση. Θα ισχύουν γενικά όλοι οι κανονισμοί και νομοθεσία για της ηλεκτρικές εγκαταστάσεις.
• Ο παραγωγός θα είναι υπεύθυνος, η δε αρμόδια αρχή θα ελέγχει ώστε να τηρούνται οι Τεχνικοί Όροι που περιλαμβάνονται στην Σύμβαση. Οι άρθροι αυτοί καθορίζουν την ποιότητα του παραγόμενου ρεύματος, το σύστημα προστασίας του δικτύου και των εγκαταστάσεων και την ασφάλεια του προσωπικού και του κοινού γενικά, σύμφωνα με τους Κανόνες Ασφαλείας που εφαρμόζει η Αρχή.
• Για εγκαταστάσεις φωτοβολταϊκών συστημάτων δυναμικότητας μεγαλύτερης των 20KW, οι αιτητές πρέπει να υποβάλουν αίτηση στην Ρυθμιστική Αρχή Ενέργειας Κύπρου (ΡΑΕΚ) για εξασφάλιση Άδειας Κατασκευής, Παραγωγής και Προμήθειας Ηλεκτρισμού ή εξαίρεσης.
• Για εγκατάσταση φωτοβολταϊκών συστημάτων που δεν θα τοποθετηθούν στην οροφή νόμιμων οικοδομών οι αιτητές πρέπει να εξασφαλίσουν Πολεοδομική Άδεια από την Αρμόδια Πολεοδομική Αρχή [2].

4.10. ΑΝΑΓΚΕΣ ΣΕ ΥΠΟΔΟΜΗ
Για τη λειτουργία του φωτοβολταϊκού πάρκου απαιτείται σύνδεση με το δίκτυο μεταφοράς του ηλεκτρισμού και νερό για τον περιοδικό καθαρισμό των πλαισίων. Για τη σύνδεση του ΦΒ πάρκου με τη γραμμή μεταφοράς έχει γίνει αίτηση από τον ιδιοκτήτη για σύνδεση με γειτονική γραμμή μεταφοράς χαμηλής τάσης.
Για την κάλυψη των περιοδικών αναγκών του έργου σε νερό θα γίνεται περιοδική επίσκεψη βυτοφόρου στο υπό μελέτη τεμάχιο.
Οι ανάγκες σε νερό εκτιμώνται 2 κ.μ. νερού ανά τρίμηνο.
Για την ασφάλεια του έργου, ο χώρος του πάρκου θα περιφραχτεί και θα εγκατασταθεί σύστημα παρακολούθησης. Επίσης θα τοποθετηθούν προειδοποιητικές πινακίδες για αποφυγή οποιοδήποτε οχήματος στο σύστημα.

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
4.11. ΑΝΑΓΚΕΣ ΣΕ ΥΛΙΚΑ

Για την ολοκλήρωση των εγκαταστάσεων του φωτοβολταϊκού πάρκου θα απαιτηθούν τα ακόλουθα:

- 576 φωτοβολταϊκά πλαίσια μαζί με τις μεταλλικές βάσεις στήριξης και τον λοιπό εξοπλισμό.
- 12 μικρούς μετατροπείς (inverters).
- 350 μέτρα περίπου περίφραξη.
- 30 κ.μ. οπλισμένο σκυρόδεμα για την κατασκευή των βάσεων στήριξης.
- 30 τόνους λευκό χαλίκι επίστρωσης στην πλατία εργασίας.
- Περιορισμένη ποσότητα προκατασκευασμένων υλικών και μπετόν για την κατασκευή του βοηθητικού υποστατικού και του υποστατικού για τον μετρητή (μεταλλική κατασκευή, γυψοσανίδες, είδη υγιεινής κλπ.).

4.12. ΑΝΑΓΚΕΣ ΣΕ ΠΡΟΣΩΠΙΚΟ

Για τη λειτουργία του έργου δεν θα χρειαστεί να απασχοληθεί προσωπικό σε συνεχή βάση. Οι εργασίες που είναι απαραίτητες για την ομαλή λειτουργία του ΦΒ πάρκου είναι:

- Έλεγχος πλαισίων
- Καθαρισμός πλαισίων
- Έλεγχος παραγόμενης ενέργειας

Ο τυπικός έλεγχος των πλαισίων και της παραγόμενης ενέργειας μπορεί να πραγματοποιείται μία φορά κάθε ένα ή δύο μήνες και ο καθαρισμός κάθε τριήμερο (εξαρτάται από τη σκόνη που θα μαζεύουν τα πλαίσια, τη βροχή κλπ.). Επομένως δεν παρίσταται ανάγκη μόνιμου προσωπικού.

4.13. ΠΕΡΙΓΡΑΦΗ ΕΡΓΑΣΙΩΝ ΚΑΤΑ ΤΟ ΣΤΑДΙΟ ΚΑΤΑΣΚΕΥΗΣ ΕΡΓΟΥ

Διαμόρφωση χώρου
Στο χώρο όπου θα τοποθετηθούν τα πλαίσια θα διαμορφωθεί επίπεδη πλατεία εργασίας σε δύο επίπεδα. Η διαμόρφωση των πλατειών εργασίας περιλαμβάνει τη συμπίεση της επιφάνειας με χρήση οδοστρωτήρα και την επίστρωση με υλικό επιχωμάτωσης για την κάλυψη όλων των ανωμαλιών.

Εξασφάλιση γραμμής μεταφοράς ηλεκτρισμού
Θα πραγματοποιηθούν οι εργασίες μεταφοράς γραμμής στο τεμάχιο μελέτης μέσω του δρόμου πρόσβασης. Το υπό μελέτη τεμάχιο συνορεύει με γυπλίνες της ΑΗΚ.

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
ΘΕΜΙΣ ΠΡΩΤΟΠΑΠΑ ΜΗΤΡΟΥ

«ΜΕΛΕΤΗ ΕΚΤΙΜΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ

EURO POWER SOLUTIONS

Βελτιώσεις οδοποιίας
Για την πρόσβαση στο ΦΒ πάρκο κρίνεται απαραίτητη η μερική βελτίωση (διαπλάτυνση και ομαλοποίηση) της χωμάτινης πρόσβασης. Επομένως δεν θα χρειαστεί η μεταφορά αγγείων και η χρήση γερανών.

Η μεταφορά των αγγείων (βάσεις και πλαίσια) θα γίνει με φορτηγά τα οποία δεν αναμένεται να συναντήσουν αλλά ούτε και να προκαλέσουν ιδιαίτερα προβλήματα στο οδικό δίκτυο ή την κυκλοφορία της περιοχής.

Για την μεταφορά των αγγείων αναμένεται να πραγματοποιηθούν 4 διαδρομές με φορτηγά για την μεταφορά πλαισίων και μεταλλικών βάσεων και άλλες 4 διαδρομές για την μεταφορά του μπετόν.

Εγκατάσταση ΦΒ πάρκου
Θα συναρμολογηθούν και θα στερεωθούν οι ανοξείδωτες μεταλλικές βάσεις (αλουμινίου) όπου θα εγκατασταθούν τα πλαίσια. Οι μεταλλικές βάσεις θα στερεωθούν σε προκατασκευασμένα πέδιλα (βάσεις) από οπλισμένο σκυρόδεμα. Τα πέδιλα αυτά θα έχουν διαστάσεις 40x40x60 cm και 40x40x80 cm (ΥxΜxΠ). Αφού τοποθετηθούν τα πλαίσια στις μεταλλικές βάσεις, θα γίνει η καλωδίωση και η σύνδεση μεταξύ τους.

Ακολούθως θα γίνει επίστρωση της πλατάς εργασίας με λευκό χαλίκι το οποίο θα συνισφέρει στο πάρκο με επιπρόσθετες ανακλάσεις ηλιακής ακτινοβολίας.

Περίφραξη και σύστημα ασφαλείας
Θα τοποθετηθεί περίφραξη και θα εγκατασταθεί κατάλληλο σύστημα ασφαλείας του ΦΒ πάρκου.

Σύνδεση και λειτουργία του ΦΒ πάρκου
Σύνδεση του ΦΒ πάρκου με το δίκτυο της ΑΗΚ και έναρξη λειτουργίας του.
Φωτογραφία 4: Πάσαλοι μεταφοράς ηλεκτρισμού χαμηλής τάσης οι οποίοι ευρίσκονται εντός της περιοχής μελέτης.

Φωτογραφία 5: Πάσαλοι μεταφοράς ηλεκτρισμού μέσης τάσης οι οποίοι ευρίσκονται 50 περίπου μέτρα μακρυά από το προτεινόμενο χωρο κατασκευής του Φωτοβολταϊκού Πάρκου.
4.14 ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΠΑΡΑΜΕΤΡΟΙ

Κατά την κατασκευή και λειτουργία της μονάδας παραγωγής ηλεκτρικού ρεύματος θα πρέπει να ληφθούν υπόψη οι παράμετροι που μπορεί να προκαλέσουν επιπτώσεις τόσο στον χώρο και στην αισθητική του τοπίου που θα υλοποιηθεί το έργο, όσο και στο φυσικό και σε κοινωνικό περιβάλλον.

Για τον λόγο αυτό οι κατασκευαστικές εργασίες θα πραγματοποιηθούν με δέοντα προσοχή έτσι ώστε να μην προκληθούν διαταράξεις στα εδαφικά υποστρώματα και να μην προκληθούν αναταραχές στο φυσικό και κοινωνικό περιβάλλον. Για την πλήρη επίγνωση των επιπτώσεων από την κατασκευή και την λειτουργία του έργου στο περιβάλλον θα αναλυθούν σε επόμενο κεφάλαιο όλες οι επιδράσεις που μπορεί να προκύψουν (όπως για παράδειγμα επιπτώσεις στην ατμόσφαιρα, το έδαφος, τα ύδατα, στο τοπικό περιβάλλον της κοινότητας κ.α.).
5. ΑΞΙΟΛΟΓΗΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ

Κατά την κατασκευή και λειτουργία της μονάδας παραγωγής ηλεκτρικού ρεύματος από φωτοβολταϊκά δεν θα παραχθούν κάποιοι ρύποι οι οποίοι αναλύονται ανάλογα με την περιβαλλοντική διάσταση που μπορεί να έχουν. Θα εξεταστεί και να αξιολογηθεί η επίδραση του προτεινόμενου έργου στην περιοχή και το υφιστάμενο φυσικό περιβάλλον και κοινωνικό περιβάλλον.

5.1 ΒΙΟΛΟΓΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Έπειτα από επισκέψεις πεδίου, παρατήρηση, καταγραφή και φωτογράφηση που πραγματοποιήθηκαν τον Νοέμβριο του 2011 καθώς επίσης και από στοιχεία από την υφιστάμενη βιβλιογραφία για την ευρύτερη περιοχή έγινε μια καταγραφή της χλωρίδας και της πανίδας στην περιοχή του τεμαχίου στο οποίο θα υλοποιηθεί το έργο.

5.1.1 ΧΛΩΡΙΔΑ

Η ευρύτερη περιοχή χαρακτηρίζεται από λίγες χαρουπιές και λίγες ελιές. Κύριο χαρακτηριστικό είναι οι χαμηλοί θάμνοι και η άγρια βλάστηση.
Φωτογραφία: Ευρύτερης περιοχής

Η φυτοκάλυψη της περιοχής υλοποίησης του έργου αποτελείται από θάμνους, ενώ κατά κύριο λόγο το ευρύτερο βιολογικό περιβάλλον είναι αρκετά υποβαθμισμένο λόγο της ύπαρξης καλλιεργειών, κυρίως οπωροκηπευτικών.

Τα είδη που καταγράφηκαν κατά την επιτόπια επίσκεψη παρουσιάζονται στον πιο κάτω πίνακα:

Ιδιαίτερα σημειώνεται η ύπαρξη κλαδιών κλαδιών στον περιβάλλοντα κύκλο του εργοτάξιου.

Πίνακας 8: ειδών που απαντώνται στην ευρύτερη περιοχή του έργου

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Λατινικό όνομα</th>
<th>Κοινό όνομα</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Olea europaea</td>
<td>Ελιά</td>
</tr>
<tr>
<td>2</td>
<td>Prunus amygdalus</td>
<td>Αμυγδαλία</td>
</tr>
<tr>
<td>3</td>
<td>Vitis spp</td>
<td>Αμπέλι</td>
</tr>
<tr>
<td>4</td>
<td>Urtica pilulifera</td>
<td>Τσουκνίδα</td>
</tr>
<tr>
<td>5</td>
<td>Asparagus acutifolius</td>
<td>Αγρέλια</td>
</tr>
<tr>
<td>6</td>
<td>Capparis spinosa</td>
<td>Κάτπαρης</td>
</tr>
<tr>
<td>7</td>
<td>Crataegus azarolus</td>
<td>Μοσφιλιά</td>
</tr>
<tr>
<td>8</td>
<td>Sarcopoterium spinosum</td>
<td>Μαζιά</td>
</tr>
<tr>
<td>9</td>
<td>Noea mucronata</td>
<td>Αντρούκλιαγρος</td>
</tr>
<tr>
<td>10</td>
<td>Calendula arvensis</td>
<td>Μαργαρίτα</td>
</tr>
<tr>
<td>11</td>
<td>Silybum marianum</td>
<td>Γαϊδουράγκαθο</td>
</tr>
<tr>
<td></td>
<td>Ceratonia siliqua</td>
<td>Χαρουπιά</td>
</tr>
</tbody>
</table>

Πιο κάτω παρατίθενται φωτογραφίες που λήφθηκαν από το τεμάχιο στο οποίο θα υλοποιηθεί το έργο.

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΩΤΗΤΑΣ 150ΚΩ ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Φωτογραφία: Τεμάχιο υλοποίησης έργου

Φωτογραφία: Από το είδος Calendula arvensis, μαργαρίτας που εντοπίζεται στο τεμάχιο

Φωτογραφία: Από το είδος Capparis spinosa, κάππαρης που εντοπίζεται στο τεμάχιο

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150Κיו ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Φωτογραφία: Από το είδος Silybum marianum, γαϊδουράγκαθο που εντοπίζεται στο τεμάχιο

Στην ευρύτερη περιοχή συναντούμε και τα ακόλουθα:

<table>
<thead>
<tr>
<th>Επιστημονικό Όνομα</th>
<th>Κοινό Όνομα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferula communis</td>
<td>Άρτηκας</td>
</tr>
<tr>
<td>Sarcopoterium spinosum</td>
<td>Μαζίν</td>
</tr>
<tr>
<td>Vicia sativa</td>
<td>Βίκος</td>
</tr>
<tr>
<td>Pisum sativum</td>
<td>Άγριο μπιζέλι</td>
</tr>
<tr>
<td>Onopordum cyprium</td>
<td>Γαουράγκαθθος (ενδημικό)</td>
</tr>
<tr>
<td>Cistus sp.</td>
<td>Ξυσταρκά</td>
</tr>
<tr>
<td>Genista fassellata</td>
<td>Μαυροσπαλαθκιά</td>
</tr>
<tr>
<td>Rubia tenuifolia</td>
<td>Κολλητσιά</td>
</tr>
<tr>
<td>Carlina involucrate ssp. cyprica</td>
<td>Καρλίνα η περιβληματοφόρος (ενδημικό)</td>
</tr>
<tr>
<td>Apiaceae sp.</td>
<td></td>
</tr>
</tbody>
</table>
5.2 ΠΑΝΙΔΑ

Όσον αφορά την πανίδα στην περιοχή μελέτης, παρατίθεται ενδεικτικός κατάλογος με τα διάφορα είδη πανίδας (Πίνακας Θηλαστικών και Πίνακας Ερπετών), όπως αυτά καταγράφηκαν από επιτόπιες επισκοπής, καθώς και είδη τα οποία παρατηρήθηκαν στην ευρύτερη περιοχή μελέτης κατά προηγούμενως χρόνους.

Πίνακας 9: Είδη θηλαστικών που αναγνωρίστηκαν στην ευρύτερη περιοχή

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Επιστημονικό Όνομα</th>
<th>Κοινό Όνομα</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hemiechinus auritus</td>
<td>Ασιατικός σκατζόχοιρος</td>
</tr>
<tr>
<td>2</td>
<td>Mus cypriacus</td>
<td>Κυπριακός ποντικός</td>
</tr>
</tbody>
</table>

Πίνακας 10: Είδη ερπετών που αναγνωρίστηκαν στην ευρύτερη περιοχή

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Επιστημονικό Όνομα</th>
<th>Κοινό Όνομα</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cyrtopodion kotschyi</td>
<td>Μυσιαρός</td>
</tr>
<tr>
<td>2</td>
<td>Coluber jugularis (Hierophis jugularis)</td>
<td>Θερκό</td>
</tr>
<tr>
<td>3</td>
<td>Ophisops elegans schlue teri</td>
<td>Σιελεληντουάνα</td>
</tr>
<tr>
<td>4</td>
<td>Coluber jugularis Linnaeus</td>
<td>Κυπριακό φίδι</td>
</tr>
<tr>
<td>5</td>
<td>Chalcides ocellatus</td>
<td>Βυζάστρα</td>
</tr>
</tbody>
</table>

Φωτογραφία: Από το είδος Coluber jugularis Linnaeus, κυπριακό φίδι, φωτογραφία από το εικονικό μουσείο βιοποικιλότητας της Κύπρου

Σύμφωνα με τα στοιχεία που συγκέντρωσαν οι μελετητές, οι επιπτώσεις που θα έχει το έργο στην χλωρίδα και την πανίδα της περιοχής αναμένεται να είναι περιορισμένες. Αυτό οφείλεται στην μικρή έκταση του έργου καθώς και στον χαρακτήρα της περιοχής καθώς το τεμάχιο που θα

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
χρησιμοποιηθεί για την υλοποίηση του έργου δεν φέρει ποικιλίες ειδών που να ανήκουν σε προστατευόμενα ή είδη προς εξαφάνιση (κάθε άλλο τα είδη είναι κοινά και σε αφθονία τόσο στην ευρύτερη περιοχή όσο και σε άλλες περιοχές ανάλογου υψόμετρου). Η κατασκευή της μονάδας παραγωγής ηλεκτρικής ενέργειας θα αλλοιωθεί σε ένα μικρό βαθμό την αισθητική του τοπίου αλλά δεν θα προκαλέσει αποκοπή δέντρων γιατί το τεμάχιο στο οποίο θα υλοποιηθεί το έργο καλύπτεται από χαμηλή άγρια βλάστηση (θάμνοι και φρύγανα).

5.3 ΓΕΩΛΟΓΙΑ ΚΑΙ ΥΔΡΟΛΟΓΙΑ

Τα πετρώματα που εμφανίζονται στην περιοχή μελέτης δείχνουν μεγάλη λιθολογική ποικιλία και ανήκουν στην Παλαιογενές και Νεογενές περίοδο της Ιζηματογενής ακολουθίας του Τροόδους. Συνοπτικά, τα πετρώματα της περιοχής είναι αυτά του σχηματισμού των Λευκάρων και του σχηματισμού Πάχνας και εκτείνονται από την Παλαιόκαινο μέχρι τη Μειόκαινο εποχή. Από το Παλαιόκαινο (65 εκ. χρόνια) η ιζηματογένεση έγινε ανθρακική με την απόθεση του Σχηματισμού Λευκάρων, που αποτελείται από πελαγικές μάργες και κρητίδες χαρακτηριστικού λευκού χρώματος με παρουσία ή μη κερατόλιθων. Η κλασσική ανάπτυξη του εν λόγω Σχηματισμού αντιπροσωπεύεται με τέσσερα στρωματογραφικά μέλη: α) τις Κατώτερες Μάργες, β) τις Κρητίδες με στρώσεις Κερατόλιθων, γ) τις συμπαγείς Κρητίδες και δ) τις Ανώτερες Μάργες. Πάνω από τον Σχηματισμό Λευκάρων ακολουθούν τα ιζήματα του Σχηματισμού Πάχνας (Μειόκαινο, 22 εκ. χρόνια), που αποτελούνται κυρίως από υποκίτρινες μάργες και κρητίδες. Το κτιριωπό χρώμα, η παρουσία στρώσεων ασβεστολιθικού ψαμμίτη, και η κατά τόπους ανάπτυξη κροκαλοπαγών αποτελούν τα χαρακτηριστικά διάκρισης του Σχηματισμού Πάχνας από το Σχηματισμό Λευκάρων. Η ιζηματογένεση του Σχηματισμού Πάχνας άρχισε και τέλειωσε σε περιβάλλον αβαθών θαλασσών με την ανάπτυξη υφαλογενών ασβεστολιθών.

Χάρτης του Τμήματος Γεωλογικής Επισκόπησης

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔYNAMIKOΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Εξετάζοντας την υδρολογία της περιοχής βλέπουμε ότι δεν συναντώνται κοιτάσματα υπόγειων υδάτων. Συγκεκριμένα, η ευρύτερη περιοχή του Άρσου υπάγεται στο υδατικό σώμα CY-18 Λεύκαρα Πάχνας, το οποίο σύμφωνα με τα στοιχεία του Τμήματος Αναπτύξεως Υδάτων πρόκειται για ένα σύμπλεγμα υδροφόρων που είτε επικοινωνούν μεταξύ τους είτε είναι απομονωμένοι. Έχουν όμως ένα κοινό χαρακτηριστικό που τους ενοποιεί σε ένα Σώμα και αυτό είναι τα πετρώματα μέσα στα οποία αποθηκεύεται το νερό. Το σύστημα αυτό είναι δύσκολο να μελετηθεί με ακρίβεια έτσι με τα διαθέσιμα δεδομένα έχουν γίνει εκτιμήσεις στις πλειστές των περιπτώσεων. Η ποσοτική κατάσταση χαρακτηρίστηκε ‘κακή’ αφού η πλειονότητα των δεδομένων δείχνουν πτωτική τάση της υπόγειας στάθμης σε πολλές γεωτρήσεις και μείωση των ροών πολλών πηγών.
Το έργο δεν αναμένεται να προκαλέσει αλλαγή στα μορφολογικά, τυπιολογικά ή τα υδατικά χαρακτηριστικά της περιοχής. Οι εργασίες εκσκαφών θα είναι περιορισμένες κλίμακας και δεν θα επιφέρουν σημαντικές αλλαγές στην γεωμορφολογία του οικοπέδου.

5.4 ΚΛΙΜΑΤΟΛΟΓΙΚΑ ΚΑΙ ΒΙΟΚΛΙΜΑΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

5.4.1 ΜΕΤΕΩΡΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ

Ο Πίνακας 8 που ακολουθεί παρουσιάζει τα κλιματολογικά δεδομένα του μετεωρολογικού σταθμού Ακρωτηρίου Λεμεσού ο οποίος βρίσκεται κοντά στην περιοχή μελέτης (= 20 km). Τα δεδομένα ταξινομούνται ανά μήνα και ανά κλιματολογική παράμετρο. Ο μετεωρολογικός σταθμός Ακρωτήριου Λεμεσού έχει τα ακόλουθα χαρακτηριστικά:

<table>
<thead>
<tr>
<th>Μήνας</th>
<th>Θερμ. αέρα (°C)</th>
<th>Σχετ. Υγρ. (%)</th>
<th>Ημερ. ηλιακή ακτινοβολία (kWh/m²/ημ)</th>
<th>Ατμοσφαιρική Πίεση (kPa)</th>
<th>Ταχ. Ανέμου (10 m) m/s</th>
<th>Θερμ. Εδάφους (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ι</td>
<td>12,5</td>
<td>70,0</td>
<td>2,74</td>
<td>100,8</td>
<td>4,0</td>
<td>14,6</td>
</tr>
<tr>
<td>Φ</td>
<td>12,4</td>
<td>68,0</td>
<td>3,70</td>
<td>100,7</td>
<td>4,1</td>
<td>14,6</td>
</tr>
<tr>
<td>Μ</td>
<td>14,1</td>
<td>68,6</td>
<td>5,11</td>
<td>100,6</td>
<td>4,1</td>
<td>16,6</td>
</tr>
<tr>
<td>Α</td>
<td>17,4</td>
<td>67,9</td>
<td>6,28</td>
<td>100,4</td>
<td>4,2</td>
<td>20,2</td>
</tr>
<tr>
<td>Μ</td>
<td>20,8</td>
<td>68,7</td>
<td>7,46</td>
<td>100,3</td>
<td>4,2</td>
<td>24,3</td>
</tr>
<tr>
<td>Ι</td>
<td>24,3</td>
<td>69,6</td>
<td>8,40</td>
<td>100,1</td>
<td>4,4</td>
<td>28,7</td>
</tr>
<tr>
<td>Ι</td>
<td>26,6</td>
<td>71,6</td>
<td>8,14</td>
<td>99,8</td>
<td>4,5</td>
<td>31,9</td>
</tr>
<tr>
<td>Α</td>
<td>27,0</td>
<td>17,6</td>
<td>7,32</td>
<td>99,9</td>
<td>4,2</td>
<td>32,0</td>
</tr>
<tr>
<td>Σ</td>
<td>25,1</td>
<td>66,1</td>
<td>6,23</td>
<td>100,2</td>
<td>3,7</td>
<td>29,4</td>
</tr>
<tr>
<td>Ο</td>
<td>21,9</td>
<td>63,0</td>
<td>4,66</td>
<td>100,6</td>
<td>3,1</td>
<td>25,3</td>
</tr>
<tr>
<td>Ν</td>
<td>17,3</td>
<td>66,0</td>
<td>3,21</td>
<td>100,8</td>
<td>3,5</td>
<td>20,2</td>
</tr>
<tr>
<td>Δ</td>
<td>13,8</td>
<td>71,0</td>
<td>2,45</td>
<td>100,9</td>
<td>3,5</td>
<td>16,1</td>
</tr>
<tr>
<td>Ετος</td>
<td>19,5</td>
<td>68,5</td>
<td>5,48</td>
<td>100,4</td>
<td>4,0</td>
<td>22,9</td>
</tr>
</tbody>
</table>

Πίνακας 8 Μετεωρολογικά Δεδομένα από το σταθμό Ακρωτηρίου στη Λεμεσό [9].
Όπως φαίνεται στο πίνακα η Μέση ετήσια θερμοκρασία του αέρα στην περιοχή είναι 19,5 °C και διαφέρει κατά 3,4 °C από τη μέση ετήσια θερμοκρασία του εδάφους.

Η μέση ετήσια σχετική υγρασία είναι 68,5% στην παράλια περιοχή του Ακρωτηρίου αλλά στην ημιορεινή περιοχή της κοινότητας, Σωτήρας είναι μικρότερη.

Από ότι γίνεται αντλητικό από τον πίνακα η ημερήσια ηλιακή ακτινοβολία είναι πολύ μεγάλη και σχετίζεται άμεσα με το προτεινόμενο έργο. Γενικά το κυπριακό κλίμα χαρακτηρίζεται από μεγάλη ηλιοφάνεια. Στην ευρύτερη περιοχή μελέτης η ηλιοφάνεια κυμαίνεται από 5,5 ώρες/ημέρα ως 12,5 ώρες/ημέρα με μέση ετήσια τιμή 9,1 ώρες/ημέρα. Η μέγιστη ηλιακή ακτινοβολία παρατηρείται το μήνα Ιούλιο (8,40 kWh/m²·ημέρα -οριζόντια). Η ετήσια ηλιακή ακτινοβολία στην περιοχή ανέρχεται στις 2.000 kWh/m² (5,48 kWh/m²·ημ * 365 ημέρες).

Όπως φαίνεται από το χάρτη που ακολουθεί (χάρτης 10), η Κύπρος είναι από τις πιο προνομιούχες χώρες στην Ευρώπη για την αξιοποίηση της ηλιακής ακτινοβολίας.

Στον επόμενο χάρτη (χάρτης 11), παρουσιάζεται η διακύμανση της ηλιακής ακτινοβολίας σε τοπικό επίπεδο. Επίσης υποδεικνύεται και η περιοχή μελέτης του έργου.

Χάρτης 10 Δυναμικό αξιοποίησης ηλιακής ακτινοβολίας από φωτοβολταϊκά πλαίσια στις Ευρωπαϊκές χώρες.
Ευρωπαϊκές χώρες.
Χάρτης 11 Ετήσιο άθροισμα ηλιακής ακτινοβολίας σε κεκλιμένο φωτοβολταϊκό πλαίσιο.

5.5. ΠΟΙΟΤΗΤΑ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ

Στην περιοχή μελέτης δεν υπάρχουν βιομηχανικές αναπτύξεις ή άλλες δραστηριότητες που να συμβάλλουν στην ρύπανση της ατμόσφαιρας. Επίσης η τοπική διακίνηση οχημάτων είναι περιορισμένη και δεν μπορεί να θεωρηθεί ικανή να υποβαθμίσει την ποιότητα της ατμόσφαιρας. Επομένως θεωρείται ότι η ποιότητα της ατμόσφαιρας στην περιοχή είναι πολύ καλή και τα επίπεδα αέριων ρύπων δεν ξεπερνούν τα επιτρεπτά όρια.

Στον πίνακα που ακολουθεί (Πίνακας 9) δίνονται τα όρια ποιότητας του ατμοσφαιρικού αέρα της Κύπρου όπως καθορίστηκαν από την Κυπριακή Νομοθεσία με τον Περί της Ποιότητας του Ατμοσφαιρικού Αέρα Νόμο Κ.Δ.Π 574/2002.

5.6 ΔΟΝΗΣΕΙΣ

Τόσο από τις κατασκευαστικές εργασίες όσο και από την λειτουργία της μονάδας δεν θα προκληθούν δονήσεις γιατί οι εργασίες που θα πραγματοποιηθούν για την υλοποίηση του έργου δεν απαιτούν μηχανικά μέσα ή εξοπλισμό που να προκαλεί δονήσεις. Ως εκ τούτου δεν θα έχουμε καμιά επίπτωση στα εδαφικά υποστρώματα της περιοχής.
5.7 ΚΥΚΛΟΦΟΡΙΑ ΚΑΙ ΟΔΙΚΟ ΔΙΚΤΥΟ

Κατά την περίοδο της κατασκευής του έργου, θα παρατηρηθεί μια αύξηση στην διέλευση οχημάτων από το δρόμο της περιοχής λόγω της διακίνησης φορτηγών και άλλων βαρέων οχημάτων (π.χ. εκκαβή) που θα χρειαστούν για την υλοποίηση των κατασκευαστικών εργασιών.

Κατά την λειτουργία της μονάδας παραγωγής ηλεκτρικού ρεύματος, η μονή διαφορά που θα παρατηρηθεί στο οδικό δίκτυο θα είναι η περιοδική διακίνηση των φορτηγών ή βυτίων μεταφοράς πρώτων υλών (π.χ. ελαίων) στο χώρο του έργου.

5.8 ΚΟΙΝΩΝΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Σύμφωνα με τα δημογραφικά δεδομένα της απογραφής πληθυσμού του 2001 που πραγματοποιήθηκε από την Στατιστική Υπηρεσία, η κοινότητα του Άρσους έχει πληθυσμό που ανέρχεται στα 233 άτομα. Η κοινότητα είναι σύμφωνη για την υλοποίηση του πρωτοκόλλου έργου και αυτό υποστηρίζεται και από σχετική επιστολή η οποία συντάχθηκε εκ μέρους του προέδρου του Κοινοτικού Συμβουλίου του Άρσους στις 16 Σεπτεμβρίου του 2011.

5.9 ΑΡΧΑΙΟΤΗΤΕΣ Η ΣΗΜΕΙΑ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

Σύμφωνα με το τμήμα αρχαιοτήτων και από το τμήμα πολεοδομίας και οικήσεως καθώς επίσης και τις γραφικές απεικονίσεις των χαρτών στην «Στρατηγική Μελέτη Περιβαλλοντικών Επιπτώσεων από την Μερική Τροποποίηση του Γραπτού Κειμένου της Δήλωσης Πολιτικής», του 2011, η περιοχή εγκατάστασης της μονάδας παραγωγής ηλεκτρικού ρεύματος, δεν αποτελεί σημείο ενδιαφέροντος και δεν παρουσιάζει κανένα στοιχείο που να υποδεικνύει αρχαιολογικό ενδιαφέρον.
6. ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ

6.1. ΠΕΡΙΛΗΨΗ ΚΕΦΑΛΑΙΟΥ

Οι αρνητικές επιπτώσεις από το προτεινόμενο έργο μπορούν να χαρακτηρισθούν στο σύνολό τους ως ελάχιστες. Οι επιπτώσεις αυτές είναι κυρίως από τη χρήση διαφόρων υλικών και ενέργειας για την κατασκευή των ΦΒ (στο εργοστάσιο), οι περιορισμένες οχλήσεις θορύβου και σκόνης κατά την εγκατάσταση του ΦΒ πάρκου και ο κίνδυνος από εκπομπές αέριων ρύπων σε περίπτωση πυρκαγιάς. Η αισθητική ύφες του φωτοβολταϊκού πάρκου μπορεί να είναι μία επιπρόσθετη επίπτωση η οποία όμως κρίνεται πάντα με υποκειμενικά κριτήρια του κάθε ανθρώπου.

Απ’ την άλλη, οι θετικές επιπτώσεις από τη λειτουργία του προτεινόμενου έργου είναι πολύ σημαντικές. Το ΦΒ πάρκο θα παράγει ηλεκτρισμό, αθόρυβα, χωρίς απόβλητα και εκπομπές αέριων ρύπων συνεισφέροντας σημαντικά στην προστασία του περιβάλλοντος και την αντιμετώπιση των κλιματικών αλλαγών.

6.2. ΘΟΡΥΒΟΣ

Η λειτουργία του ΦΒ πάρκου δεν προκαλεί θορύβους καθώς δεν υπάρχουν κινούμενα μηχανικά μέρη στα ΦΒ πλαίσια και ούτε προβλέπεται να γίνονται οποιεσδήποτε θορυβώδες εργασίες. Τα τοπικά επίπεδα θορύβου στην περιοχή εγκατάστασης αναμένεται να αυξηθούν μόνο κατά τις κατασκευαστικές εργασίες όπου θα διαμορφωθούν οι πλατιές εργασίες.

Παρόλα αυτά δεν αναμένεται να προκληθεί οποιαδήποτε όχληση λόγω της μεγάλης απόστασης από κατοικημένες περιοχές. Επίσης οι κατασκευαστικές εργασίες θα έχουν περιορισμένη χρονική διάρκεια και η δημιουργία θορύβου θα είναι μεμονωμένη.

6.3. ΟΣΜΕΣ

Δεν υπάρχει δημιουργία οσμών κατά τη κατασκευή, κατά τη λειτουργία ή κατά το τερματισμό λειτουργίας του προτεινόμενου έργου.

6.4. ΑΤΜΟΣΦΑΙΡΑ

Η ατμόσφαιρα θα επιβαρυνθεί τοπικά με αύξηση των επιπέδων σκόνης κατά την περίοδο διαμόρφωσης του χώρου του έργου. Κατά τη λειτουργία του έργου δεν θα δημιουργούνται οποιεσδήποτε εκπομπές είτε σκόνης είτε αέριων ρύπων που να επιφέρουν επιπτώσεις στο ατμοσφαιρικό περιβάλλον.

Ενδεικτικά αναφέρεται ότι για τις ανάγκες εγκατάστασης του ΦΒ πάρκου θα πραγματοποιηθούν τα ακόλουθα δρομολόγια:

• 4 δρομολόγια με φορτηγό για την μεταφορά των πλαισίων και των βάσεων
• 4 δρομολόγια με φορτηγό για την μεταφορά μπετόν
• 2 δρομολόγια με φορτηγό για την μεταφορά άλλων δομικών υλικών και χαλικιού.
• 20 δρομολόγια για την μεταφορά προσωπικού και μηχανικών.
• 5 δρομολόγια εκσκαφέα

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Θεωρείται ότι όλα τα δρομολόγια θα πραγματοποιηθούν από την πόλη της Λεμεσού επομένως ισχύουν τα ακόλουθα:

Πίνακας 12 Συντελεστές αέριων εκπομπών ανά τύπο οχήματος.

<table>
<thead>
<tr>
<th>Τύπος οχήματος</th>
<th>Αριθμός δρομολογίων</th>
<th>Κατανάλωση καυσίμου</th>
<th>Εκπομπές CO2</th>
<th>Εκπομπές CO</th>
<th>Εκπομπές NOx</th>
<th>Εκπομπές PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φορτηγό</td>
<td>10</td>
<td>35 L / 100 km</td>
<td>954 gr/km</td>
<td>0.24 gr/km</td>
<td>0.99 gr/km</td>
<td>0.09 gr/km</td>
</tr>
<tr>
<td>Ιδιωτικό όχημα</td>
<td>20</td>
<td>10 L / 100 km</td>
<td>300 gr/km</td>
<td>0.08 gr/km</td>
<td>0.31 gr/km</td>
<td>0.04 gr/km</td>
</tr>
<tr>
<td>Εκσκαφέας</td>
<td>5</td>
<td>26 L /100 km</td>
<td>712 gr/km</td>
<td>0.18 gr/km</td>
<td>0.74 gr/km</td>
<td>0.06 gr/km</td>
</tr>
</tbody>
</table>

Πίνακας 13 Κατανάλωση καυσίμων και αέριες εκπομπές.

<table>
<thead>
<tr>
<th>Τύπος οχήματος</th>
<th>Διαστάσεις</th>
<th>Κατανάλωση καυσίμου</th>
<th>Εκπομπές CO2</th>
<th>Εκπομπές CO</th>
<th>Εκπομπές NOx</th>
<th>Εκπομπές PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φορτηγό</td>
<td>550 km</td>
<td>192 L</td>
<td>525 kg</td>
<td>132 gr</td>
<td>545 gr</td>
<td>50 gr</td>
</tr>
<tr>
<td>Ιδιωτικό όχημα</td>
<td>1100 km</td>
<td>110 L</td>
<td>330 kg</td>
<td>88 gr</td>
<td>341 gr</td>
<td>44 gr</td>
</tr>
<tr>
<td>Εκσκαφέας</td>
<td>275 km</td>
<td>71 L</td>
<td>196 kg</td>
<td>50 gr</td>
<td>204 gr</td>
<td>17 gr</td>
</tr>
</tbody>
</table>

ΣΥΝΟΛΟ: 1925 km 373 L 1051 kg 270 gr 1090 gr 111 gr
ΘΕΜΙΣ ΠΡΩΤΟΠΑΠΑ ΜΗΤΡΟΥ
«ΜΕΛΕΤΗ ΕΚΤΙΜΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ»

Οι εκπομπές αέριων ρύπων και η κατανάλωση καυσίμων όπως συμπεραίνεται από τους πιο πάνω πίνακες είναι περιορισμένες.

Είναι σημαντικό να αναφέρθει ότι το προτεινόμενο έργο θα συνεισφέρει σημαντικά στη μείωση αέριων εκπομπών που παράγονται από την καύση μαζούτ στους ηλεκτροπαραγωγούς σταθμούς. Ενδεικτικά αναφέρεται ότι η ετήσια εξοικονόμηση εκπομπών διοξειδίου του άνθρακα από την λειτουργία του ΦΒ πάρκου θα είναι 210 τόνοι ετησίως. Επομένως, οι αέριες εκπομπές κατά τις κατασκευαστικές εργασίες (περίπου 1 τόνο) θεωρούνται αμελητέες.

Όσο αφορά την αύξηση των επιπέδων σκόνης στην περιοχή κατά τις κατασκευαστικές εργασίες περιγράφεται από τον αναμένεται να δημιουργηθεί από:

- την κίνηση οχημάτων και μηχανημάτων.
- τη μεταφορά και φορτοεκφόρτωση αδρανών υλικών.
- την εκτέλεση χωματουργικών εργασιών.

Παρόλα αυτά οι χωματουργικές και άλλες εργασίες στο τεμάχιο θα είναι περιορισμένες και μικρής χρονικής διάρκειας και επομένως δεν αναμένεται να υπάρχει επηρεασμός των υφιστάμενων επιπέδων σκόνης.

6.5. ΈΔΑΦΟΣ ΚΑΙ ΥΔΑΤΙΝΟΙ ΑΠΟΔΕΚΤΕΣ

Δεν αναμένεται να υπάρξουν οποιεσδήποτε επιπτώσεις στα υπόγεια και επιφανειακά ύδατα της ευρύτερης περιοχής, αφού δεν θα δημιουργηθούν οποιεσδήποτε ουσίες ή υγρά απόβλητα που να αποτελούν κίνδυνο μόλυνσης ή ρύπανσης του υδατικού περιβάλλοντος της περιοχής. Η μόνη δραστηριότητα στην οποία θα υπάρξει χρήση νερού είναι κατά το καθαρισμό των πλαισίων για την απομάκρυνση της σκόνης. Οι επιπτώσεις στο έδαφος θα είναι μηδαμινές καθώς τα έργα που απαιτούνται για τη διαμόρφωση των χώρων είναι περιορισμένα.

6.6. ΆΝΘΡΩΠΟΣ ΚΑΙ ΔΗΜΟΣΙΑ ΥΓΕΙΑ

Η κατασκευή και λειτουργία του ΦΒ πάρκου δεν αναμένεται να επιφέρει οποιεσδήποτε επιπτώσεις στους κατοίκους της περιοχής. Η μόνη περίπτωση στην οποία θα δημιουργηθεί κίνδυνος για τη δημόσια υγεία είναι σε περίπτωση πυρκαγιάς στο ΦΒ πάρκο. Στην περίπτωση αυτή η φωτιά θα οδηγήσει στην απελευθέρωση στην ατμόσφαιρα αέριων ρυπαντών από τα στοιχεία (Cd, Te, Se, As).

6.7. ΚΙΝΔΥΝΟΙ ΓΙΑ ΤΗΝ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΥΓΕΙΑ

Κατά τη διάρκεια της κατασκευής και εγκατάστασης οι κίνδυνοι είναι τυπικοί όπως και για κάθε εγκατάσταση παραγωγής ενέργειας. Εν τούτοις το συνεχόμενο ρεύμα από τα φωτοβολταϊκά συστήματα είναι περισσότερο επικίνδυνο από το ισοδύναμο εναλλασσόμενο και για το λόγο αυτό απαιτείται κάποια επιπλέον προστασία. Η εγκατάσταση του ΦΒ πάρκου θα γίνει από εξειδικευμένο και έμπειρο προσωπικό έτσι θεωρείται ότι ο κίνδυνος αυτός είναι περιορισμένος.

6.8. ΧΛΩΡΙΔΑ ΚΑΙ ΠΑΝΙΔΑ

Οι κατασκευαστικές εργασίες του φωτοβολταϊκού πάρκου απαιτούν την απομάκρυνσή του
συνόλου της χλωρίδας εντός του τεμαχίου στο οποίο θα τοποθετηθούν τα φωτοβολταϊκά πλαίσια για να αποφεύγονται τυχόν σκιάσεις. Στην συγκεκριμένη περίπτωση το τεμάχιο μελέτης παρουσιάζει χαμηλή φυτοκάλυψη από αξιόλογη βλάστηση και κατά συνέπεια δεν θα υπάρξουν αρνητικές συνέπειες στην χλωρίδα της περιοχής. Επιπτώσεις στην ευρύτερη πανίδα όσο αφορά την τροφή και το καταφύγιο που προσφέρει η μακία βλάστηση της άμεσης και ευρύτερης περιοχής μελέτης δεν υφίσταται αφού δεν επηρεάζεται δυσμενώς από την εγκατάσταση του έργου. Ο θόρυβος και η σκόνη από το εργοτάξιο είναι πιθανό να προκαλέσουν όχληση της πανίδας της περιοχής κατά τη διάρκεια των κατασκευαστικών διαδικασιών αλλά αυτό αναμένεται να διαρκέσει για μικρό χρονικό διάστημα μέχρι την ολοκλήρωση του έργου. Οι πληθυσμοί αυτών των ειδών (πανίδας) κατά τη διάρκεια της κατασκευής του φωτοβολταϊκού πάρκου αναμένεται να ανακάψουν γρήγορα μεταναστεύοντας στις γύρω περιοχές με παρόμοια χαρακτηριστικά. Επίσης δεν δημιουργείται η οποιαδήποτε επιβλαβής ακτινοβολία ή έντονος φωτισμός ή ήχορύπανση που να επηρεάζει τα ενδημικά και μεταναστευτικά πτηνά και γενικότερα την πανίδα και χλωρίδα της άμεσης και ευρύτερης περιοχής έρευνας.

6.7. ΚΑΙΣΟΘΗΚΗ ΕΝΤΑΞΗ
Οι επιπτώσεις της θέας των ΦΒ πλαισίων στην αισθητική της περιοχής εγκατάστασης τους είναι γενικά ένα αμφιλεγόμενο θέμα αφού είναι υποκειμενική και βασίζεται στις προσωπικές απόψεις του καθενός. Παράλληλα αυτά η απομονωμένη θέση του προτεινόμενου έργου και η μεγάλη απόσταση του από κατοικημένες περιοχές είναι παράγοντες που συντείνουν στο μετριασμό των οποιωνδήποτε αισθητικών επιπτώσεων.

6.8. ΔΗΜΟΣΙΕΣ ΥΠΟΔΟΜΕΣ
Δεν αναμένεται να υπάρξουν επιπτώσεις στις Δημόσιες Υποδομές της περιοχής.

6.9. ΟΔΙΚΗ ΚΥΚΛΟΦΟΡΙΑ
Η οδική κυκλοφορία θα επηρεαστεί για περιορισμένη χρονική περίοδο κατά την κατασκευή και κατά τον τερματισμό λειτουργίας του ΦΒ πάρκου. Κατά τη λειτουργία του έργου δεν θα υπάρξει οποιαδήποτε επιβάρυνση καθώς οι επισκέψεις στο χώρο του ΦΒ πάρκου θα πραγματοποιούνται μεμονωμένα κάθε μερικούς μήνες.

6.10. ΔΗΜΙΟΥΡΓΙΑ ΑΠΟΒΛΗΤΩΝ
Κατά την κατασκευή του έργου δεν αναμένεται να δημιουργηθούν οποιαδήποτε στερεά ή υγρά απόβλητα να είναι δύσκολα να διαχειριστούν. Κατά την επιστροφή του χώρου δεν αναμένεται να δημιουργηθούν μπάζα καθώς η οπισθοσκόπηση του τεμαχίου είναι σχετικά έλεγχτη και οι εργασίες αναμένεται να υπάρξουν μεγάλες απόβλητα καθώς η οπισθοσκόπηση του τεμαχίου είναι σχετικά έλεγχτη και οι εργασίες αναμένεται να υπάρξουν μεγάλες απόβλητα καθώς η οπισθοσκόπηση περιορίζεται. Κατά την επιστροφή του χώρου δεν αναμένεται να δημιουργηθούν μπάζα καθώς η οπισθοσκόπηση του τεμαχίου είναι σχετικά έλεγχτη και οι εργασίες αναμένεται να υπάρξουν μεγάλες απόβλητα καθώς η οπισθοσκόπηση περιορίζεται. Κατά την επιστροφή του χώρου δεν αναμένεται να δημιουργηθούν μπάζα καθώς η οπισθοσκόπηση του τεμαχίου είναι σχετικά έλεγχτη και οι εργασίες αναμένεται να υπάρξουν μεγάλες απόβλητα καθώς η οπισθοσκόπηση περιορίζεται.
πλαίσιων από τη σκόνη το οποίο θα επιστρέφει στο έδαφος χωρίς να προκαλεί οποιεσδήποτε επιπτώσεις.
Σε ότι αφορά στο στάδιο τερματισμού εργασιών και τελικής διάθεση των ΦΒ πλαίσιων, τα ΦΒ πλαίσια πρέπει να τύχουν ορθής διαχείρισης για την αποφυγή οποιοδήποτε επιπτώσεων.

6.13. ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ
Δεν θα υπάρξουν οποιεσδήποτε επιπτώσεις στους φυσικούς πόρους της περιοχής.

6.14. ΑΝΑΛΥΣΗ ΚΥΚΛΟΥ ΖΩΗΣ
Τα διαφορετικά στάδια του Κύκλου Ζωής ενός ΦΒ παρουσιάζονται στην εικόνα που ακολουθεί.

![Diagram of the Life Cycle Analysis](image.png)

Εικόνα 2 Ανάλυση κύκλου ζωής ενός ΦΒ συστήματος
ΘΕΜΙΣ ΠΡΩΤΟΠΑΠΑ ΜΗΤΡΟΥ

«ΜΕΛΕΤΗ ΕΚΤΙΜΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ»

Οι συνολικές εκπομπές αέριων ρύπων, και ειδικότερα CO₂, στα διαφορετικά στάδια ζωής ενός ΦΒ συστήματος ποικίλουν ανάλογα με τη χρησιμοποιούμενη τεχνολογία και χρήση των ΦΒ. Όσο περνούν τα χρόνια και η τεχνολογία εξελίσσεται, μειώνονται και οι εκπομπές ανά μονάδα παραγόμενης ενέργειας. Σύμφωνα με τελευταίες εκτιμήσεις για τα διαφορετικά στάδια του Κύκλου Ζωής ενός ΦΒ, υπολογίστηκε ότι οι συνολικές εκπομπές CO₂ κυμαίνονται από 20 gr μέχρι 55 gr ανά παραγόμενη kWh [17]. Οι εκπομπές αυτές είναι κατά πολύ λιγότερες, συγκρινόμενες με αυτές ενός ηλεκτροπαραγωγού σταθμού που χρησιμοποιεί πετρέλαιο. Το μεγαλύτερο δε ποσοστό των ρύπων αυτών αφορά στο στάδιο παραγωγής των ΦΒ στοιχείων.

Ένας μέσος όρος εκπομπών CO₂ μόνο από τη λειτουργία των Ηλεκτροπαραγωγών σταθμών της Κύπρου είναι 800 gr ανά kWh. Οι συνολικές εκπομπές του κύκλου ζωής των Ηλεκτροπαραγωγών σταθμών της Κύπρου είναι κατά πολύ μεγαλύτερες αφού σε αυτές πρέπει να ληφθούν υπόψη οι εκπομπές από την κατασκευή την ηλεκτρογεννητριών, την εξόρυξη, επεξεργασία και μεταφορά πετρελαίου.
Εικόνα 3 Ανάλυση αέριων εκπομπών κύκλου ζωής ενός ΦΒ συστήματος [17].

* Life-cycle emissions from silicon and CdTe PV modules. BOS is the Balance of System (i.e., module supports, cabling, and power conditioning). Conditions: ground-mounted systems, Southern European insolation, 1700 kWh/m²/yr, performance ratio of 0.8, and lifetime of 30 years. Case 1: current electricity mixture in Si production–CrystalClear project and Ecoinvent database. Case 2: Union of the Co-ordination of Transmission of Electricity (UCTE) grid mixture and Ecoinvent database. Case 3: U.S. grid mixture and Franklin database.
7. ΠΡΟΤΕΙΝΟΜΕΝΑ ΜΕΤΡΑ ΜΕΤΡΙΑΣΜΟΥ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ

7.1. ΠΕΡΙΛΗΨΗ ΚΕΦΑΛΑΙΟΥ

Τα κυριότερα μέτρα που προτείνονται για τον περιορισμό των οποιοδήποτε αρνητικών επιπτώσεων στο περιβάλλον είναι:

- Ο σωστός προγραμματισμός των μετακινήσεων από και προς το χώρο του εργοταξίου κατά το στάδιο κατασκευής του έργου.
- Η αποφυγή χρήσης οποιοδήποτε χημικών καθαριστικών για τα πλαίσια.
- Η επίβλεψη των κατασκευαστικών εργασιών για την αποφυγή ατυχημάτων.
- Η συλλογή και μεταφορά τον μπάζων από τις συσκευασίες από το εργοτάξιο σε αδειοδοτημένο χώρο απόρριψης.

7.2. ΘΟΡΥΒΟΣ

Αύξηση στα επίπεδα θορύβου στο χώρο του έργου θα παρατηρηθούν μόνο κατά την περιορισμένη περίοδο των κατασκευαστικών εργασιών. Η αύξηση αυτή δεν θα είναι σημαντική και θα περιορίζεται στο χώρο του τεμαχίου.

Επειδή το τεμάχιο χωροθετείται εκτός οικιστικής περιοχής δεν προτείνεται οποιοδήποτε μέτρο μετριασμού του θορύβου, παρά μόνο να περιορίζονται οι διακινήσεις σε διαμέσους οικιστικής περιοχής κατά τις ώρες κοινής ησυχίας για την αποφυγή παραγωγής θορύβου και ωμότητας.

7.3. ΑΤΜΟΣΦΑΙΡΑ

Η επιβάρυνση της ατμόσφαιρας από αέριες εκπομπές κατά τις κατασκευαστικές εργασίες θεωρείται αμελητέα καθώς ο όγκος εργασιών και η διακίνηση οχημάτων είναι περιορισμένη. Παρόλα αυτά, προτείνεται να γίνει προγραμματισμός των εργασιών έτσι ώστε να περιοριστεί όσο το δυνατό η διακίνηση οχημάτων. Επίσης προτείνεται τα δρομολόγια να μην πραγματοποιούνται σε ώρες αιχμής της οδικής κυκλοφορίας.

Τα επίπεδα σκόνης κατά τις κατασκευαστικές εργασίες εκτιμάται ότι δεν θα αυξηθούν σημαντικά. Όμως σε περίπτωση που τα επίπεδα σκόνης είναι αυξημένα στο χώρο του εργοταξίου προτείνεται να καταβρέχονται οι χωμάτινες επιφάνειες για να περιοριστεί ο ρυθμός εκπομπής σκόνης.

Κατά τη λειτουργία του ποταμοῦ έργου δεν θα υπάρχουν αέριες εκπομπές ή εκπομπές σκόνης.

7.4. ΟΣΜΕΣ

Δεν υπάρχουν οσμές.

7.5. ΈΔΑΦΟΣ ΚΑΙ ΥΔΑΤΙΝΟΙ ΑΠΟΔΕΚΤΕΣ

Κατά τις κατασκευαστικές εργασίες δεν αναμένεται ότι θα υπάρχει οποιαδήποτε επίπτωση στους

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
υδάτινους αποδέκτες. Κατά τη λειτουργία του έργου, η μόνη δραστηριότητα στην οποία θα υπάρχει χρήση νερού είναι κατά το καθαρισμό των πλαισίων για την απομάκρυνση της σκόνης (περιοδικός καθαρισμός). Για να μην υπάρχει επίπτωση στους υδάτινους αποδέκτες προτείνεται όπως για τον καθαρισμό των πλαισίων να χρησιμοποιείται μόνο νερό και όχι μαζί με οποιοδήποτε άλλο υλικό/υγρό καθαρισμού.

Οι επιπτώσεις στο έδαφος θα είναι μηδαμινές καθώς τα έργα που απαιτούνται για τη διαμόρφωση των χώρων είναι περιορισμένα.

7.6. ΆΝΘΡΩΠΟΣ ΚΑΙ ΔΗΜΟΣΙΑ ΥΓΕΙΑ

Η μόνη περίπτωση στην οποία θα δημιουργηθεί κίνδυνος για τη δημόσια υγεία είναι σε περίπτωση πυρκαγιάς στο ΦΒ πάρκο. Στην περίπτωση αυτή η φωτιά θα οδηγήσει στην απελευθέρωση στην ατμόσφαιρα αέριων ρυπαντών (Cd, Te, Se, As).

Σε περίπτωση φωτιάς προτείνεται οι κάτοικοι των γύρω κοινοτήτων σε απόσταση 1-2 km να παραμένουν στις οικίες τους με κλειστά παράθυρα και πόρτες. Σημειώνεται ότι η προτεινόμενη θέση του έργου απέχει 2 km από τον πυρήνα της κοινότητας Πάχνα, περίπου 3,5 km από τον πυρήνα της κοινότητας Σωτήρα, 3 km από τον πυρήνα της κοινότητας Άγιος Αμβρόσιος και 1,5 km από τον πυρήνα της κοινότητας Κισούσσα.

Επίσης προτείνεται η εγκατάσταση πυροσβεστικής φωλιάς στο χώρο του ΦΒ πάρκου.

7.7. ΚΙΝΔΥΝΟΙ ΓΙΑ ΤΗΝ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΥΓΕΙΑ

Κατά τη διάρκεια της κατασκευής και εγκατάστασης οι κίνδυνοι είναι τυπικοί όπως και για κάθε εγκατάσταση παραγωγής ενέργειας. Εν τούτω, το συνεχής ρεύμα από τα φωτοβολταϊκά συστήματα είναι περισσότερο επικίνδυνο από το ισοδύναμο εναλλασσόμενο και για το λόγο αυτό απαιτείται κάποια επιπλέον προστασία. Η εγκατάσταση του ΦΒ πάρκου θα γίνει από εξειδικευμένο και έμπειρο προσωπικό έτσι ώστε να αποφεύγεται η αλόγιστη καταστροφή της ευρύτερης βλάστησης.

7.8. ΧΛΩΡΙΔΑ ΚΑΙ ΠΑΝΙΔΑ

Δεν αναμένεται να υπάρξει οποιαδήποτε σημαντική επίπτωση στην πανίδα και χλωρίδα της περιοχής. Κατά την διάρκεια όμως των κατασκευαστικών εργασιών ο εργολάβος θα πρέπει να αποφεύγει την αποτροπή της επέκτασης της ευρύτερης βλάστησης, από την αποφυγή τυχόν ατυχήματος.

7.9. ΤΟΠΙΟ ΚΑΙ ΑΙΣΘΗΤΙΚΗ ΕΝΤΑΞΗ

Για την επιτυχία των επιπτώσεων και την αισθητική ένταξη του έργου στο τοπίο, λήφθηκε σωστή επιλογή χώρου μακριά από οικιστικές περιοχές και ζώνες καθαρισμού χωρίς αισθητικής εμφάνισης.

- Σωστή επιλογή χώρου μακριά από οικιστικές περιοχές και ζώνες προστασίας ή άλλης υποχρεωτικής μορφής.
- Σωστή χωροθέτηση των πλαισίων (σε σειρές) στο χώρο, ώστε να είναι αρμονική
- Περίφραξη του χώρου.

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150ΚΩΤ ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
7.10. ΔΗΜΟΣΙΕΣ ΥΠΟΔΟΜΕΣ

Δεν αναμένεται να υπάρξουν επιπτώσεις στις Δημόσιες Υποδομές της περιοχής.

7.11. ΟΔΙΚΗ ΚΥΚΛΟΦΟΡΙΑ

Προτείνεται κατά την κατασκευαστική περίοδο οι μετακινήσεις των φορτηγών και άλλων οχημάτων να μη γίνονται σε ώρες αιχμής της κυκλοφορίας για να αποφύγει οποιαδήποτε συμφόρηση.

7.12. ΔΗΜΙΟΥΡΓΙΑ ΑΠΟΒΛΗΤΩΝ

Τα στερεά απορρίμματα που θα προέρχονται από τις συσκευασίες των ΦΒ πλαισίων και των υλικών εξοπλισμού θα πρέπει να συλλεχθούν και να παραδοθούν σε αδειοδοτημένους φορείς συλλογής, μεταφοράς και επεξεργασίας, σύμφωνα με τον περί Στερεών και Επικίνδυνων Αποβλήτων Νόμο (N. 215(I)/2002).

Η προσωρινή αποθήκευση των στερεών αποβλήτων που θα προκύψουν από την κατασκευή του έργου, καθώς και οι πρώτες ύλες οι οποίες θα χρησιμοποιηθούν, να τοποθετηθούν σε χώρο εντός των ορίων του τεμαχίου και σε σημεία τα οποία δεν θα δημιουργήσουν οποιαδήποτε όχληση.

Τα απόβλητα ηλεκτρικού και ηλεκτρονικού εξοπλισμού που πιθανόν να προκύπτουν κατά τις περιόδους συντήρησης ή βλαβών, αλλά και οποιαδήποτε άλλα στερεά ή/και επικίνδυνα απόβλητα που προκύπτουν από τη λειτουργία και συντήρηση του εξοπλισμού, ο Φορέας Εκμετάλλευσης έχει υποχρέωση να τα παραδίδει σε αδειοδοτημένους φορείς διαχείρισης σύμφωνα με τους περί Στερεών και Επικίνδυνων Αποβλήτων Νόμους του 2002 μέχρι 2006 και να ακολουθούνται οι πρόνοιες των περί Στερεών και Επικίνδυνων Αποβλήτων (Απόβλητα Ηλεκτρικού και Ηλεκτρονικού Εξοπλισμού) Κανονισμών του 2004 (Κ.Δ.Π. 668/2004).

Σε ότι αφορά στο στάδιο τερματισμού εργασιών και τελικής διάθεση των ΦΒ πλαισίων είναι απαραίτητη η ανακύκλωση των πλαισίων και των ηλεκτρονικών μερών του συστήματος, σύμφωνα με τους περί Στερεών και Επικίνδυνων Αποβλήτων Νόμους του 2002 μέχρι 2006, Διατάγματα και Κανονισμούς αυτών.

Ηδη, σε ευρωπαϊκό επίπεδο, έχουν δημιουργηθεί μονάδες ανακύκλωσης ΦΒ πλαισίων.

7.13. ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ

Δεν θα υπάρξουν οποιεσδήποτε επιπτώσεις στους φυσικούς πόρους της περιοχής.
8. ΑΠΟΨΕΙΣ ΤΟΠΙΚΩΝ ΑΡΧΩΝ

Μετά από επικοινωνία που είχε η ομάδα μελέτης με τον πρόεδρο του Κοινοτικού Συμβουλίου στη Σωτήρα, διευκρίνισε ότι δεν υπάρχει καμία αντίρρηση για το προτεινόμενο έργο εφόσον δεν αναμένεται να έχει οποιεσδήποτε επιπτώσεις. Αναφέρθηκε ότι η χωροθέτηση του έργου βρίσκεται έκτος του πυρήνα της κοινότητας και επομένως δεν θα υπάρχει καμία όχληση.

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150ΚΩ στη Σωτήρα Λεμεσού
9. ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΜΠΕΡΑΣΜΑΤΑ

9.1. ΣΥΓΚΡΙΣΗ ΚΑΤΑΣΤΑΣΗΣ ΜΕ ΚΑΙ ΧΩΡΙΣ ΤΟ ΕΡΓΟ

Το υπό μελέτη τεμάχιο τα τελευταία χρόνια είναι αναξιοποίητη γεωργική γη. Η εγκατάσταση του ΦΒ πάρκου στην περιοχή αποτελεί επένδυση για τον ιδιοκτήτη η οποία δεν θα επηρεάσει τις χρήσεις γης στις γειτονικές ιδιοκτησίες και δεν θα απαιτεί μόνιμη εργασία και λειτουργικά κόστη.
Η ζωή του έργου θα είναι τουλάχιστον 25 έτη κατά τα οποία δεν θα υπάρξουν επιπτώσεις στο περιβάλλον ή την αξία της γης.

Επιγραμματικά αναφέρονται τα οφέλη από το έργο:

Ενεργειακό όφελος
Ετήσια παραγωγή ηλεκτρικής ενέργειας από ΑΠΕ: 232.500 kWh

Περιβαλλοντικό όφελος
Ετήσια εξοικονόμηση εκπομπών CO2: 210 τόνοι

Οικονομικό όφελος
για τον ιδιοκτήτη
Πώληση ηλεκτρικής ενέργειας πρώτα 20 χρόνια: 0,34€ / kWh
Πώληση ηλεκτρικής ενέργειας επόμενα χρόνια: Τιμή ΑΗΚ χωρίς επιδότηση

9.2. ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΕΠΙΠΤΩΣΕΩΝ

Οι αναμενόμενες επιπτώσεις από την κατασκευή και λειτουργία του προτεινόμενου έργου συνοψίζονται στο πιο κάτω πίνακα. Επίσης οι επιπτώσεις αξιολογούνται με βαθμολογία που αντικατοπτρίζει την σοβαρότητα της κάθε επίπτωσης. Με -3 βαθμολογείται η σοβαρότερη αρνητική επίπτωση και με +3 η σοβαρότερη θετική επίπτωση.

-3 Σοβαρές επιπτώσεις -2 Αυξημένες αρνητικές επιπτώσεις -1 Περιορισμένες αρνητικές επιπτώσεις
0 Καθόλου επιπτώσεις
+1 Ελάχιστες θετικές επιπτώσεις
+2 Αυξημένες θετικές επιπτώσεις
+3 Σοβαρές θετικές επιπτώσεις

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Πάντας 15 Αξιολόγηση επιπτώσεων από το προτεινόμενο έργο.

<table>
<thead>
<tr>
<th>Επίπτωση</th>
<th>Βαθμολογία</th>
<th>Παρατηρήσεις</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αξιοποίηση ΑΠΕ και επίτευξη στόχων Κυπριακής Κυβέρνησης</td>
<td>+3</td>
<td>Συμβολή στην αύξηση του ποσοστού παραγόμενης ενέργειας από ΑΠΕ</td>
</tr>
<tr>
<td>Γεωμορφολογικά και Τοπογραφικά χαρακτηριστικά</td>
<td>0</td>
<td>Κατασκευαστικά έργα</td>
</tr>
<tr>
<td>Υδρολογία</td>
<td>0</td>
<td>Δεν υπάρχουν υγρά απόβλητα</td>
</tr>
<tr>
<td>Ποιότητα της ατμόσφαιρας</td>
<td>+3</td>
<td>Έμμεσος περιορισμός αέριων ρύπων καύσης από τον περιορισμό παραγωγής ενέργειας με συμβατικά καύσιμα</td>
</tr>
<tr>
<td>Παρουσία θορύβου</td>
<td>0</td>
<td>Αθόρυβη λειτουργία και περιορισμένη περίοδος κατασκευαστικών εργασιών</td>
</tr>
<tr>
<td>Πολεοδομικά χαρακτηριστικά</td>
<td>0</td>
<td>Καμία επίπτωση (εντός Γ3)</td>
</tr>
<tr>
<td>Βιολογικό Περιβάλλον</td>
<td>0</td>
<td>Εκχέρσωση χαμηλής βλάστησης (αγριόχορτα) κατά τη διαμόρφωση του χώρου</td>
</tr>
<tr>
<td>Αρχαιολογικούς χώρους</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Στερεά και Υγρά απόβλητα</td>
<td>0</td>
<td>Ποσότητες νερού για το πλύσιμο των πλαισίων από τη σκόνη</td>
</tr>
<tr>
<td>Αισθητική της περιοχής</td>
<td>-1</td>
<td>Ελάχιστες επιπτώσεις λόγω του απομονωμένου της περιοχής. Υποκειμενικός επηρεασμός,</td>
</tr>
<tr>
<td>Επηρεασμός ηλεκτρομαγνητικών μεταδόσεων</td>
<td>0</td>
<td>Δεν υπάρχουν επιπτώσεις</td>
</tr>
<tr>
<td>Δημιουργία ανακλάσεων</td>
<td>0</td>
<td>Βρίσκεται σε υψηλό σημείο όπου δεν υπάρχουν κατοικίες στην περιοχή.</td>
</tr>
<tr>
<td>Δημιουργία σκιών στο έδαφος</td>
<td>0</td>
<td>Αμελητέες θετικές ή αρνητικές επιπτώσεις</td>
</tr>
<tr>
<td>Κοινωνικό περιβάλλον</td>
<td>+1</td>
<td>Μπορεί να αποτελέσει πρότυπο για περιβαλλοντική εκπαίδευση των κατοίκων της περιοχής. Νέες θέσεις εργασίας στο τομέα κατασκευής και εμπορίας ΦΒ πλαισίων.</td>
</tr>
<tr>
<td>Δημόσια Υποδομή</td>
<td>+2</td>
<td>Έργο ηλεκτροπαραγωγής κοινής ωφελείας</td>
</tr>
<tr>
<td>Κίνδυνος στη Δημόσια Υγεία</td>
<td>-1</td>
<td>Εκπομπές αέριων τοξικών ρύπων μόνο σε περίπτωση πυρκαγιάς</td>
</tr>
</tbody>
</table>

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
9.3. ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΕΡΓΟΥ

Η ΦΒ τεχνολογία είναι μία από τις καθαρότερες και ασφαλέστερες τεχνολογίες παραγωγής ηλεκτρισμού, συνυπολογιζόμενης της διαδικασίας κατασκευής των ΦΒ πλαισίων. Οι πρώτες ολοκληρωμένες κατασκευές των φωτοβολταϊκών στοιχείων είναι κυρίως αδρανή υλικά, όπως πυρίτιο, γυάλι, αλουμίνιο κλπ. Για κάθε kWh ηλεκτρισμού που παράγεται από ΦΒ αποφεύγεται η έκλυση περίπου 0,9 kg ρύπων στην ατμόσφαιρα, κυρίως διοξειδίου του άνθρακα (CO2), αλλά και διοξειδίου του θείου (SO2), μονοξειδίου του άνθρακα (CO), οξειδίων του αζώτου (NOx) και υδρογονανθράκων, που θα εκπέμπονταν αν χρησιμοποιούνταν συμβατικά καύσιμα.

Με την αύξηση του μεριδίου ηλεκτρικής ενέργειας που παράγεται από Φωτοβολταϊκά θα είναι σημαντική η συμβολή στην επίτευξη των στόχων του Κιότο και της Ευρωπαϊκής Ένωσης για μείωση των εκπομπών που προκαλούν το φαινόμενο του θερμοκηπίου.

Η ανάπτυξη των ΦΒ εφαρμογών έχει πολλαπλά σημασία για τους καταναλωτές, την εθνική ηλεκτρική ενέργεια (ΑΗΚ) και την εθνική οικονομία. Συγκεκριμένα έχουμε:

- Αξιοποίηση μιας εγχώριας ανανεώσιμης πηγής ενέργειας, που βρίσκεται σε αφθονία, με συμβολή στην ασφάλεια παροχής ενέργειας και στην αποκεντρωμένη παραγωγή.
- Ενίσχυση του ηλεκτρικού δικτύου στις ώρες των μεσημβρινών αιχμών, ιδιαίτερα κατά τη θερινή περίοδο.
- Μείωση των απωλειών του δικτύου με την παραγωγή στο τόπο της κατανάλωσης, ελάφρυνση των γραμμών και χρονική μετάθεση των επενδύσεων στο δίκτυο.
- Δημιουργία θετικής εικόνας για χρήση τεχνολογιών αξιοποίησης ανανεώσιμων πηγών ενέργειας.
- Ανάπτυξη οικονομικών δραστηριοτήτων και δημιουργία θέσεων εργασίας.
- Ανάπτυξη βιομηχανικών δραστηριοτήτων συναρμολόγησης ΦΒ και εξαρτημάτων.

Συμπερασματικά,

Το προτεινόμενο έργο θεωρείται ότι είναι περιβαλλοντικά βιώσιμο εάν κατασκευαστεί στην περιοχή που έχει καθοριστεί και λειτουργεύει σύμφωνα με τις προτεινόμενες προδιαγραφές και εισηγήσεις αυτής της μελέτης.
10. ΒΙΒΛΙΟΓΡΑΦΙΑ

[1] Ετήσια έκθεση Αρχής Ηλεκτρισμού Κύπρου 2010

Επιτροπή Διαχείρισης Ειδικού Ταμείου Α.Π.Ε και Ε.Σ.Ε.

[3] ΜΕΕΠ για την κατασκευή και λειτουργία Πάρκου Φωτοβολταϊκών της εταιρείας KLIMATERI GREEN ENERGY LTD

[14] ΜΕΕΠ για την κατασκευή και λειτουργία Πάρκου Φωτοβολταϊκών της εταιρείας TRIMEX ENERGY LTD (REC EURO POWER SOLUTIONS LTD)

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150KW ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
ΠΑΡΑΡΤΗΜΑ 1. ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ

1. ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΠΛΑΙΣΙΩΝ SUNMATE 260P

2. ΜΕΤΑΤΡΟΠΕΙΣ ΚΑΣΟ 12000TL

3. ΜΕΤΑΚΙΝΟΥΜΕΝΕΣ ΒΑΣΕΙΣ MECASOLAR

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150ΚΨ ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
Product Detailed Information

<table>
<thead>
<tr>
<th>Model/Type Designation</th>
<th>Base Design Type (^\text{[1]}) (previously certified)</th>
<th>Applicant Design Type (new design – this program)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YX-260M</td>
<td>YX-260P</td>
</tr>
</tbody>
</table>

- Modules submitted for testing are:
 - A. Standard production products

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Module total length x width (m x m)</td>
<td>1950’990</td>
<td>1950’990</td>
</tr>
<tr>
<td>Module weight (kg)</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>

Cells

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual cell Area (cm(^2))</td>
<td>237.24</td>
<td>237.24</td>
</tr>
<tr>
<td>Cell technology ((\text{mono-Si, poly-Si, a-Si, CIS, CdTe, etc.}))</td>
<td>Mono-Si</td>
<td>Poly-Si</td>
</tr>
<tr>
<td>Cell thickness (µm)</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>Cell manufacturer and part #</td>
<td>Motech(SuZhou)Renewable Energy Co., LTD</td>
<td>Motech(SuZhou)Renewable Energy Co., LTD</td>
</tr>
<tr>
<td>Cell manufacturing location</td>
<td>Kunshan City, Jiangsu Province High-tech Zone of renewable energy industry base in the 1st Rd Motech</td>
<td>Kunshan City, Jiangsu Province High-tech Zone of renewable energy industry base in the 1st Rd Motech</td>
</tr>
</tbody>
</table>

Electrical Circuit

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of cells</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Number of cells in series</td>
<td>156’156</td>
<td>156’156</td>
</tr>
<tr>
<td>Number of series strings – attach wiring diagram</td>
<td>See attachment</td>
<td>See attachment</td>
</tr>
<tr>
<td>Number of bypass diodes</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Bypass diode rating (A) – attach diode datasheet</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Bypass diode max junction temperature (°C)</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Bypass Diode Location ((\text{e.g. - wiring compartment, laminated}))</td>
<td>Junction box</td>
<td>Junction box</td>
</tr>
<tr>
<td>Series fuse rating (A)</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Interconnection

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Interconnect material and supplier model no.</td>
<td>Kunming SLT Science and Technology Co., Ltd.</td>
<td>Kunming SLT Science and Technology Co., Ltd.</td>
</tr>
<tr>
<td>Cell Interconnect cross-sectional area (µm)</td>
<td>160'1800</td>
<td>160'1800</td>
</tr>
<tr>
<td>Module interconnect (bus bar)</td>
<td>Kunming SLT Science and Technology Co., Ltd.</td>
<td>Kunming SLT Science and Technology Co., Ltd.</td>
</tr>
<tr>
<td>Module interconnect (bus bar)</td>
<td>200'5000µm</td>
<td>200'5000µm</td>
</tr>
<tr>
<td>Solder bonding technique ((\text{e.g. – hot air or induction}))</td>
<td>manual hot iron</td>
<td>manual hot iron</td>
</tr>
<tr>
<td>Solder material</td>
<td>Fluxing agent GOLF703-SD YIK SHING TAT SOLDER MANUFACTURER Co.,Ltd</td>
<td>Fluxing agent GOLF703-SD YIK SHING TAT SOLDER MANUFACTURER Co.,Ltd</td>
</tr>
</tbody>
</table>

Packaging

<table>
<thead>
<tr>
<th>Product Detailed Information</th>
<th>Base Design Type[1] (previously certified)</th>
<th>Applicant Design Type (new design)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superstrate type (e.g. – strengthened glass, tempered glass)</td>
<td>Tempered glass</td>
<td>Tempered glass</td>
</tr>
<tr>
<td>Superstrate manufacturer and part #</td>
<td>Henan SIKEDA New Energy Material Co., Ltd</td>
<td>Henan SIKEDA New Energy Material Co., Ltd</td>
</tr>
<tr>
<td>Encapsulant type</td>
<td>EVA</td>
<td>EVA</td>
</tr>
<tr>
<td>Encapsulant manufacturer and part #</td>
<td>Hangzhou First PV Material Co., Ltd</td>
<td>Hangzhou First PV Material Co., Ltd</td>
</tr>
<tr>
<td>Substrate type (e.g. – glass, Tedlar, TPE, TPT, Polyester, etc)</td>
<td>TPT</td>
<td>TPT</td>
</tr>
<tr>
<td>Substrate thickness – by layer</td>
<td>25/250/25</td>
<td>25/250/25</td>
</tr>
<tr>
<td>Substrate manufacturer and part #</td>
<td>Germany Dunmore</td>
<td>Germany Dunmore</td>
</tr>
</tbody>
</table>

Frame/Mounting

<table>
<thead>
<tr>
<th>Frame type/material</th>
<th>Al frame</th>
<th>Al frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame coating – corrosion protection</td>
<td>surface sand-sprayed oxidation treatment, oxide layer (\geq 15 \mu m)</td>
<td>surface sand-sprayed oxidation treatment, oxide layer (\geq 15 \mu m)</td>
</tr>
<tr>
<td>Adhesive system used for mounting?</td>
<td>Yes (TONSAN 1527)</td>
<td>Yes (TONSAN 1527)</td>
</tr>
<tr>
<td>Mounting designed for heavy snow load (5400 Pa)?</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Does the manufacturer intend to sell frameless modules?</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Wiring Compartment and System Connection

<table>
<thead>
<tr>
<th>Wiring Compartment manufacturer and part #</th>
<th>Cixi Renhe Photovoltaic Electrical Appliance Co., Ltd. PV-RH701</th>
<th>Cixi Renhe Photovoltaic Electrical Appliance Co., Ltd. PV-RH701</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Wiring Compartment potted? – YES or NO</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Wiring Compartment potting material, if answered Yes above</td>
<td>Not used</td>
<td>Not used</td>
</tr>
<tr>
<td>Wiring Compartment backing adhesive</td>
<td>TONSAN 1527</td>
<td>TONSAN 1527</td>
</tr>
<tr>
<td>Cable manufacturer and part #</td>
<td>Cixi Renhe Photovoltaic Electrical Appliance Co., Ltd 2 PfG 1169 1×4,0mm²</td>
<td>Cixi Renhe Photovoltaic Electrical Appliance Co., Ltd 2 PfG 1169 1×4,0mm²</td>
</tr>
<tr>
<td>Connector manufacturer and part #</td>
<td>Cixi Renhe Photovoltaic Electrical Appliance Co., Ltd 05-1</td>
<td>Cixi Renhe Photovoltaic Electrical Appliance Co., Ltd 05-1</td>
</tr>
</tbody>
</table>
Mechanical drawings MN-260W
Imagine perfect grid current – the kind you get from large-scale power plants – but from decentralised renewable sources. The Powador 10.0 TL3 to 14.0 TL3 units combine KACO’s many years of experience in developing transformerless units with the demand for perfect grid feeding. Since they are true three-phase units, they provide high-quality, sinusoidal alternating current with a 120-degree phase shift – a dream come true for all grid operators. They also meet all of the requirements of Germany’s new Medium Voltage Directive (“Mittelspannungsrichtlinie”).

These units give you a lot of flexibility in designing your PV system. They operate with two separate MPP trackers to allow for optimum adjustment. Two strings can be connected for each DC/DC actuator, which means that the units can process the solar power from four strings. The input voltage window is extremely wide: 350 to 800 V. The peak efficiency is more than 98%.

Cooling is provided by demand-driven fans that are aimed directly at the temperature-sensitive components. It is easy to achieve perfect communication with the three units. In addition to the normal RS485 interface, which enables you to query yield data with the Powador-pro-LOG, they offer innovations that provide a lot of convenience: an integrated web server for uninterrupted monitoring via Ethernet, a USB connection for installing software updates and downloading all log data, as well as a graphic display to view operating data.

The new housing makes the units compact and simplifies installation. A number of country-specific default settings are programmed into the inverters. These are easy to select during on-site installation. Your choice of operating language is independent of these settings.

Available for delivery as of January 2011.
Powador 12.0 TL3

Highlights
- Three-phase inverter
- Transformerless
- Two MPP trackers
- Degree of efficiency > 98%
- Multilingual menu
- Graphical display
- Integrated web server
- USB connection for updates and downloads

Electrical data 12.0 TL3

Input variables
- PV max. generator output: 12 000 W
- MPP range: 350 V ... 800 V
- No-load voltage: 1 000 V
- Max. input current: 2 x 17.5 A
- Number of strings: 2 x 2
- Number of MPP controllers: 2

Output variables
- Rated output: 10 000 VA
- Supply voltage: acc. to local requirements
- Rated current: 3 x 14.5 A
- Rated frequency: 50 Hz / 60 Hz
- cos phi: transformerless

General electrical data
- Max. efficiency: 98.0 %
- Europ. efficiency: 97.0 %
- Night consumption: < 1 W
- Switching plan: transformerless
- Network monitoring: acc. to local requirements

Mechanical data
- Display: graphical display + LEDs
- Control units: 4-way navigation + 2 buttons
- Interfaces: Ethernet, USB, RS485, S0 output
- Fault signalling relay: potential-free NOC max. 230 V / 1 A
- Connections: DC: solar connector, AC: cable connection M32 and terminal
- Ambient temperature: -25 °C ... +60 °C*
- Cooling: temperature-dependent fan
- Protection class: IP65
- Noise emission: < 45 dB (A) (noiseless when operated without fan)
- DC-switch: integrated
- Casing: aluminium casting
- H x W x D: 690 x 420 x 200 mm
- Weight: approx. 40 kg

* Power derating at high ambient temperatures

* The text and figures reflect the current technical state at the time of printing. Subject to technical changes. Errors and omissions excepted.

Your retailer
High Tech Solar Trackers
MS-2 TRACKER 10 • MS-2 TRACKER 10 +
mecasolar is a company dedicated to the design, manufacture and distribution by PROINSO of state-of-the-art 2-axis solar tracking systems, seasonal 1-axis azimuth trackers and fixed structures, making it possible to increase photovoltaic solar energy production, offering a 10 year GUARANTEE on parts and workmanship. World-leading mecasolar trackers and fixed structures are the securest, studiest, most efficient and profitable on the market.

MS-2 TRACKER 10
- V-shaped metal structure and grill for up to 13.16 kWp (Fifty-six 235 Wp modules) panels
- PLC tracking, in a fully equipped independent electric panel
- Three phase motors on both axes
- Hook-up/connection cabinet for storing protectors

MS-2 TRACKER 10+
- V-shaped metal structure and grill for up to 13.16 kWp (Fifty-six 235 Wp modules) panels
- PLC tracking, in a fully equipped independent electric panel
- Three phase motors on both axes
- Hook-up/connection cabinet for storing protectors (magnetothermic (PIA), differential, power surge protection), fully wired
- Two 6.0 kWn single phase SMA Sunny Boy SB 6000 inverter for outdoors use, IP 65

The client can include as many inverters as they wish. Other SMA inverter models can be fitted.

mecasolar makes a clear commitment to its customers. With the aim of satisfying the various and diverse needs of our clients, we offer a series of complementary services for all tracking systems:

- Management and support for everything related to construction project execution, low voltage, medium voltage and module and inverter configuration, with our entire Engineering Department at your disposal.
- Adapting to project management needs as required by the customer. We schedule tracker system deliveries to our customers in a timely manner and fully manage and coordinate the logistics.
- Adjusting the tracker system to fit customer power requirements for photovoltaic panels and inverters. Additionally, we can install the inverter at the clients’ request.
- We provide electromechanical corrective and preventative maintenance yearly on the tracker systems based on the schedule and frequency defined by the client.
mecasolar is one of the worldwide industry leaders with the greatest capacity in the market to manufacture solar trackers. Currently, in 2016, we have the capacity to manufacture 1,272 solar trackers per month, the equivalent to producing 14 MW/year.

mecasolar holds at present the CE, ISO 9001:2000 and ISO 14001:2004 certifications, which makes it possible for it to achieve consistent, excellent fabrication quality with the best guarantees for our clients. Environmentally friendly and consistent with sustainable economic and social development. We also provide fast and flexible service. All components have been tested before being shipped to the client's construction site.

At present we have factories at the following sites:
- Fustiñana - Sede Central - Navarra - SPAIN
- Tudela - Navarra - SPAIN
- Talavera la Real - Badajoz - SPAIN
- Tesalonica - GREECE
- Milan - ITALY
- West Sacramento - USA

Experience

Some relevant projects:
- Almaraz-CACERES 20 MW
- Talayuela-CACERES 10 MW
- Alixin-CACERES 20 MW
- Castejón-NAVARRA 5 MW
- Fustiñana-NAVARRA 5 MW
- Las Gabias-GRANADA 13 MW
- Aznalcollar-SEVILLA 2 MW
- La Roda-ALBACETE 2 MW
- La Gineta-ALBACETE 2 MW

180 MW installed
10-YEAR GUARANTEE ON PARTS AND WORKMANSHIP
The mega solar tracker is a product that has been the subject of many years of research, that has been submitted to the strictest resistance and efficiency tests, obtaining as a result, the UNIQUE solar tracker with the best GUARANNEES on the market.

MULTI-POWER and MULTIPLE MANUFACTURER FLEXIBILITY
The flexor solar tracker structure provides the mega solar tracker with incredible FLEXIBILITY when it comes to installing different panels made by various manufacturers. The system can handle a maximum power of 13,16 kWp.

OVER 35% INCREASE IN PRODUCTIVITY
The mega solar tracking system is capable of increasing photovoltaic solar energy production by more than 35%, when compared to a fixed installation. This maximizes profits by reducing the investment in solar panels.

FOUNDATION
Foundation on surface footing - 10 cubic yards (7.5 m³) - that does not require any excavation. It is only necessary to clean off the terrain, removing the top layer of vegetation and levelling the ground.

OUTPUT / THREE PHASE CONNECTION
Each of the three phases are connected to each one of the 3 inverters. This feature reduces losses due to wiring and provides a more balanced power output. Upon any damage in any of the 3 phases, 2/3 of the installation is still productive.

ADAPTABLE TO CHANGING WEATHER CONDITIONS
The mega solar tracker comes equipped with a microcontroller station and works with a PLC controller. The solar tracking device uses this technology to orient the panels under a variety of climate conditions. The PLC programming permits the tracker to operate in snow, electrical storms, fog, darkness and windy conditions. It can withstand winds of up to 90 mph (145 Kmh), and is programmed to adjust the tracker to a horizontal position when wind speeds are in excess of 45 mph (75 Kmh).

INDEPENDENT CONTROL
The mega solar tracker comes equipped with an independent PLC controller, which works to monitor solar movements, to handle the prevailing weather conditions and to perform remote operations.

STURDY, EASY TO INSTALL, REDUCED MAINTENANCE, AND LOW POWER USAGE
The mega solar tracker motors consume less energy per year (100 kWh/year), resulting in reduced maintenance. Likewise, the robustness of their design and fabrication guarantees the investment over the long term. Furthermore, the easy installation reduces labour costs and time spent on the construction project.
1 Transport. 12 partially assembled trackers on 4 trucks.
 The mecasolar trackers are partially assembled before being shipped. 10 fully assembled V-shaped structures are shipped on two trucks, and 2 grills are shipped on a third truck. It is not necessary to contract any special transportation.

2 Surface Footing.
 No excavation is necessary. Foundation on surface footing that does not require any excavation. It is only necessary to clean off the terrain, removing the top layer of vegetation and leveling the ground. We provide our clients with the necessary mould.

3 Quick and simple tracker installation on the foundation footing:
 With the same machine used to clean off the terrain, we install the V-shaped structure on the foundation footing. Then, the structure is aligned over the foundation bolts using a double nut system.

4 Flexible Installation of Modules
 Any module with any power rating.
 The grill, the structure on which the module is assembled, gives the mecasolar tracker great flexibility in that it permits mounting modules with different power ratings, made by different manufacturers. At this time, the mecasolar tracker is the market's most open option, which permits working with any type of module.

5 Quick Assembly on the Structure.
 Given that one installation crew is able to work on the foundation and on mounting the V-shaped structure on the foundation on one side, while another crew is able to install the modules on the grill, the installation crew can be flexible and versatile and is able to meet reduced installation times.

6 Quick and Simple Tune-up
 Our clients can count on the support of the mecasolar technical department at all times to guide them through all phases of their project including: project engineering, civil engineering, construction and installation; as well as in tune-ups and maintenance.
Technical Specifications

Tracker axis
2-AXIS: Horizontal and Vertical

Maximum surface of modules
970 square feet (90m²)

Maximum Photovoltaic Power
13.16 kWp (depending on the efficiency of the modules)

Azimuth drive
By gearmotor and cogged crown wheel

Azimuth rotation angle
Vertical axis: -120° to +120°

Tilt drive
Electrically driven mechanical jack

Motorized Tilt
Adjustable from 0° to 60°

Tracker height at 60°
22 feet (6.7 mts.) (from ground to top modules)

Motor operating voltage
480 V Three Phase

Structure
Hot dipped galvanized steel structure

Structure design
"V" Structure on cogged crown wheel

Weight without modules, and without foundation
6600 lb (3000 Kg)

Electrical cabinets and PLC protection
Metal, weatherproof, fully wired, IP66. Includes PLC fully wired to motor with protection

Electrical supply cabinet
Metal, weather-tight, fully wired, IP66, includes AC surge protection and magnetic relays. IP66 differential (only for MS TRACKER +)

Tracking technology
Independent Astronomical positioning of PLC

Monitoring
On site, Ethernet, Internet (OPTIONAL)

Inverters
2 SB SMA inverters 6.0 kWt IP65 1 SC 506 HE for 50 trackers and others combination

Modules to be installed
Any type of PV modules. Optional module holder profile

Module maximum weight
2750 lb (1250Kg)

Wind protection system
Programmable. Horizontal positioning at speeds over 43.5 mph (70 Km/h) (by gearmotor skipping)

Foundation
Surface circular foundation, 10 cubic yards (7.5m³) wire concrete. Optional anchor bolts, direct bolt anchoring

Complies with
UNE-ENV 1991 Eurocode, CE, UL DIN 1055-4 (8.84), DIN 1056 (10.84)

Maximum wind speed
90 mph (145Km/h)

Maintenance
Annual revision of electrical and mechanical parts to keep the guarantee in force

Guarantee
Up to 10 years on Parts and workmanship

Structure diagram

MECASOLAR SPAIN
Pº Ind. Santos Justo y Pastor, s/n, 31510 - Fuente el Saz, Navarra, España
Phone: (+34) 948 64 09 99
Fax: (+34) 948 64 09 07
info@mecasolar.com

MECASOLAR ITALY
Milano Business Park
Via de Mosaics 97 (Edificio A1)
20142 Milano - Italia
Phone: (+39) 02 84 10 92 69
Fax: (+39) 02 84 71 77 47
italia@mecasolar.com

PROINSO HELLAS SA
Industrial Area of Thessaloniki
Building Block 40, DA 12a
P.O. Box: 1952 - 57022 Salonica, Thessaloniki - Greece
Phone: (+3) 2310 799 209
Fax: (+3) 23 10 570 967
hellas@mecasolar.com

MECASOLAR US LLC
1430 Enterprise Blvd., West Sacramento, CA 95691
United States
Phone: (+1) 916 374 8722
Fax: (+1) 916 374 8063
usa@mecasolar.com

www.mecasolar.com

ΠΑΡΑΡΤΗΜΑ 2. ΚΑΤΟΨΗ -ΠΕΡΙΓΡΑΜΜΑ ΤΟΥ ΧΩΡΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ

ΠΑΡΚΟ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΔΥΝΑΜΙΚΟΤΗΤΑΣ 150ΚΒ ΣΤΗ ΣΩΤΗΡΑ ΛΕΜΕΣΟΥ
MS 10 TRACKER UNIT

14.65 m maximum (according to specifications)

7.25 m minimum (according to specifications)

MS 10 TRACKER UNIT WITH THE SOLAR UNITS
(48 units on each tracker, arranged in 5x10 formation)

SOLAR PANEL UNITS ALLOCATION