Μελέτη Περιβαλλοντικών Επιπτώσεων από τη νέα Γραμμή Μεταφοράς Ηλεκτρισμού «Βασιλικό-Μονή»

Τελική Έκθεση

Ιούλιος, 2010

Ο Ανάδοχος:
Ατλαντίς Συμβουλευτική Κύπρου ΑΤΛ
Ιωάννη Γρυπάρη 2, Trust House, Γρ. 104, 1090 Λευκωσία
Τηλ.: 22660482, Φαξ: 22660516
Email: info@atlantis-consulting.eu
Web: www.atlantis-consulting.eu
Μελέτη Περιβαλλοντικών Επιπτώσεων από τη νέα Γραμμή Μεταφοράς «Βασιλικό-Μονή»

Τελική Έκθεση

Ιούλιος, 2010

Η Μελέτη εκπονήθηκε από:

Ατλαντίς Συμβουλευτική Κύπρου ΛΤΔ
Ιωάννη Γρυπάρη 2, Trust House, Γρ. 104, 1090 Λευκωσία
Τηλ.: 22660482, Φαξ: 22660516
Email: info@atlantis-consulting.eu
Web: www.atlantis-consulting.eu

Για την ΑΤΛΑΝΤΙΣ Συμβουλευτική Κύπρου ΛΤΔ,

Χαράλαμπος Παναγιώτου
Διευθύνων Σύμβουλος Ατλαντίς Συμβουλευτική Κύπρου ΛΤΔ
ΠΕΡΙΕΧΟΜΕΝΑ

ΠΕΡΙΕΧΟΜΕΝΑ.. 0
ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ... 5
ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ .. 6
1 ΜΗ ΤΕΧΝΙΚΗ ΠΕΡΙΛΗΨΗ.. 8
 1.1 Εισαγωγή ... 8
 1.2 Επιπτώσεις κατά την Κατασκευή ... 8
 1.2.1 Επιπτώσεις στην Ποιότητα της Ατμόσφαιρας ... 8
 1.2.2 Επιπτώσεις στο ακουστικό περιβάλλον ... 9
 1.2.3 Δημιουργία Στερεών Αποβλήτων ... 9
 1.2.4 Επιπτώσεις στο Οδικό Δίκτυο και στη Δημόσια Υποδομή 10
 1.2.5 Επιπτώσεις στο Βιολογικό Περιβάλλον ... 10
 1.2.6 Επιπτώσεις στη Γεωμορφολογία και Υδρολογία της Περιοχής 10
 1.3 Επιπτώσεις κατά τη Λειτουργία ... 11
 1.3.1 Επιπτώσεις στο Ανθρωπογενές Περιβάλλον ... 11
 1.3.2 Υδρογεωλογικές Συνθήκες-Ρύπανση των Υδάτων και του Εδάφους 11
 1.3.3 Βιολογικό Περιβάλλον ... 11
 1.3.4 Ηλεκτρομαγνητικά Πεδία .. 11
 1.3.5 Θόρυβος .. 12
 1.3.6 Κοινωνικοοικονομικό Περιβάλλον ... 12
 1.3.7 Τοπίο και αισθητικές αξίες .. 13
 1.4 Συνοπτική Παρουσίαση των Επιπτώσεων κατά την κατασκευή 14
 1.5 Συνοπτική Παρουσίαση των Επιπτώσεων κατά τη Λειτουργία 15
 1.6 Συμπεράσματα .. 16
2 ΜΕΛΕΤΗΤΕΣ ΚΑΙ ΕΙΔΙΚΟΙ ΟΡΟΙ ΣΥΝΕΡΓΑΣΙΑΣ .. 17
 2.1 Ειδικότητες και καθήκοντα των Μελετητών .. 17
ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΜΕΛΕΤΗΣ ... 20
3 ΘΕΣΜΙΚΟ ΠΛΑΙΣΙΟ .. 22
 3.1 Εισαγωγή ... 22
 3.2 Νομικό Πλαίσιο .. 22
Μελέτη Περιβαλλοντικών Επιπτώσεων από τη νέα Γραμμή Μεταφοράς Ηλεκτρισμού «Βασιλικό-Μονή»

4 ΜΕΘΟΔΟΛΟΓΙΑ ... 24
4.1 Συλλογή Στοιχείων ... 24
4.2 Μελέτες πεδίου ... 24
4.3 Αξιολόγηση πεδίου μετρήσεων και εκτίμηση επιπτώσεων ... 25
4.4 Εκτίμηση ηλεκτρομαγνητικών πεδίων ... 26
4.5 Εισήγηση μέτρων ελαχιστοποίησης των επιπτώσεων και διαμόρφωση προγράμματος παρακολούθησης .. 27
4.6 Πολυκριτηριακή ανάλυση .. 27
5 ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΡΓΟΥ ... 29
5.1 Εισαγωγικά ... 29
5.2 Γραμμή μεταφοράς ... 29
5.3 Όρια Περιοχής Μελέτης ... 29
5.4 Τεχνικά Χαρακτηριστικά του Προτεινόμενου Έργου ... 31
5.4.1 Εργατικό προσωπικό κατασκευαστικών εργασιών ... 31
5.4.2 Εξοπλισμός κατασκευής .. 32
5.4.3 Εκσκαφές ... 34
5.4.4 Υγεία και ασφάλεια ... 34
5.4.5 Υγεία κατά την κατασκευή ... 35
5.5 Κατευθυντήριες Γραμμές για Ηλεκτρομαγνητικά Πεδία .. 35
5.6 Πρόκληση Θορύβου .. 38
5.6.1 Διαρθώσεις για βουητό (tonal) και κρουστικό χαρακτήρα του θορύβου .. 40
5.6.2 Μέθοδος εκτίμησης (Method of Assessment) ... 41
5.6.3 Πρόκληση Θορύβου κατά τη Λειτουργία ... 41
5.7 Ποιότητα της ατμόσφαιρας ... 41
5.7.1 Κατά την Κατασκευή .. 41
5.7.2 Πρόκληση Ατμοσφαιρικής Ρύπανσης Κατά τη Λειτουργία .. 42
5.8 Δημιουργία Αποβλήτων (Στερεά, Υγρά, Επικίνδυνα) ... 43
5.8.1 Απόβλητα Εκσκαφών και Υλικών κατά την Κατασκευή .. 43
Μελέτη Περιβαλλοντικών Επιπτώσεων από τη νέα Γραμμή Μεταφοράς Ηλεκτρισμού «Βασιλικό-Μονή»

5.8.1.1 Στερεά απόβλητα αστικού τύπου .. 44
5.8.1.2 Υγρά απόβλητα ... 44
5.8.1.3 Επικίνδυνα απόβλητα ... 45
5.8.1.4 Υλικά Κατασκευής .. 45
5.8.2 Απόβλητα κατά τη Λειτουργία .. 45

5.9 Διακίνηση Οχημάτων και Μηχανημάτων ... 45

5.9.1 Κατά την κατασκευή ... 45
5.9.2 Κατά την λειτουργία ... 46

5.10 Χρονοδιάγραμμα υλοποίησης .. 46

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΤΟΥ ΥΦΙΣΤΑΜΕΝΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ 47

5.11 Εισαγωγή ... 47
5.12 Φυσικό Περιβάλλον .. 47

5.12.1 Γεωλογικά Χαρακτηριστικά ... 47
5.12.2 Τεκτονικό πλαίσιο ... 49
5.12.3 Υπόγεια νερά ... 49
5.12.4 Επιφανειακά νερά ... 50
5.12.5 Σεισμικότητα ... 50

5.13 Υφιστάμενη Ποιότητα της Ατμόσφαιρας ... 51
5.14 Ακουστικό Περιβάλλον ... 52
5.15 Μετεωρολογικά Χαρακτηριστικά ... 52

5.15.1 Βροχόπτωση .. 52
5.15.2 Θερμοκρασία ... 53

5.16 Ανθρωπογενές Περιβάλλον .. 54

5.16.1 Διοικητικά Ορια και Επηρεαζόμενη Γη .. 54
5.16.2 Υφιστάμενες Πολεοδομικές Ζώνες ... 55
5.16.3 Υφιστάμενες Χρήσεις Γης ... 57
5.16.4 Ιδιαίτερα Χαρακτηριστικά / Στοιχεία Αναφοράς / Αρχαιοτήτες 57
5.16.5 Τοπίο .. 58
5.16.6 Οδικό Δίκτυο .. 58

5.17 Πληθυσμιακή, Πολιτιστική / Κοινωνική και Οικονομική Υποδομή 59
5.18 Βιολογικό Περιβάλλον ... 59
<table>
<thead>
<tr>
<th>Μέλετη Περιβαλλοντικών Επιπτώσεων από τη νέα Γραμμή Μεταφοράς Ηλεκτρισμού «Βασιλικό-Μονή»</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18.1 Χλωρίδα</td>
</tr>
<tr>
<td>5.18.2 Οικότοποι</td>
</tr>
<tr>
<td>5.18.3 Πανίδα</td>
</tr>
<tr>
<td>5.18.4 Ορνιθοπανίδα</td>
</tr>
<tr>
<td>5.18.5 Θηλαστικά</td>
</tr>
<tr>
<td>5.18.6 Ερπετά-Αμφίβια-Ασπόνδυλα</td>
</tr>
<tr>
<td>6 ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ</td>
</tr>
<tr>
<td>6.1 Εισαγωγή</td>
</tr>
<tr>
<td>6.2 Επιπτώσεις από τη Μη Υλοποίηση του Έργου</td>
</tr>
<tr>
<td>6.2.1 Ρύπανση του νερού και των εδαφών</td>
</tr>
<tr>
<td>6.2.2 Βιολογικό Περιβάλλον</td>
</tr>
<tr>
<td>6.2.3 Κοινωνικοοικονομικό Περιβάλλον</td>
</tr>
<tr>
<td>6.2.4 Υφιστάμενες Πολεοδομικές Ζώνες και Αναπτυξιακή Υποδομή</td>
</tr>
<tr>
<td>6.2.5 Οδικό Δίκτυο – Κυκλοφορία – Τάσεις</td>
</tr>
<tr>
<td>6.2.6 Ηχορύπανση και Ποιότητα της Ατμόσφαιρας</td>
</tr>
<tr>
<td>6.3 Επιπτώσεις κατά τη Μελέτη</td>
</tr>
<tr>
<td>6.4 Επιπτώσεις κατά την Κατασκευή</td>
</tr>
<tr>
<td>6.4.1 Εισαγωγή</td>
</tr>
<tr>
<td>6.4.2 Επιπτώσεις στην Ποιότητα της Ατμόσφαιρας</td>
</tr>
<tr>
<td>6.4.2.1 Κριτήρια Ποιότητας της Ατμόσφαιρας</td>
</tr>
<tr>
<td>6.4.2.2 Επιπτώσεις στην ποιότητα της ατμόσφαιρας</td>
</tr>
<tr>
<td>6.4.2.3 Εκπομπές ρύπων από την λειτουργία των μηχανημάτων</td>
</tr>
<tr>
<td>6.4.3 Επιπτώσεις στο ακουστικό περιβάλλον</td>
</tr>
<tr>
<td>6.4.3.1 Κριτήρια θορύβου</td>
</tr>
<tr>
<td>6.4.3.2 Εκτίμηση επιπτώσεων από το θόρυβο-Μεθοδολογία για εκτίμηση παραπόνων από θόρυβο</td>
</tr>
<tr>
<td>6.4.4 Δημιουργία Στερεών Αποβλήτων</td>
</tr>
<tr>
<td>6.4.5 Επιπτώσεις στο Οδικό Δίκτυο και Δημόσια Υποδομή</td>
</tr>
<tr>
<td>6.4.6 Επιπτώσεις στο Βιολογικό Περιβάλλον</td>
</tr>
<tr>
<td>6.4.6.1 Χλωρίδα</td>
</tr>
<tr>
<td>6.4.6.2 Πανίδα</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>6.4.7</td>
</tr>
<tr>
<td>6.5</td>
</tr>
<tr>
<td>6.5.1</td>
</tr>
<tr>
<td>6.5.2</td>
</tr>
<tr>
<td>6.5.3</td>
</tr>
<tr>
<td>6.5.3.1</td>
</tr>
<tr>
<td>6.5.3.2</td>
</tr>
<tr>
<td>6.5.4</td>
</tr>
<tr>
<td>6.5.4.1</td>
</tr>
<tr>
<td>6.5.5</td>
</tr>
<tr>
<td>6.5.6</td>
</tr>
<tr>
<td>6.5.7</td>
</tr>
<tr>
<td>6.5.8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>7.1</td>
</tr>
<tr>
<td>7.2</td>
</tr>
<tr>
<td>7.3</td>
</tr>
<tr>
<td>7.3.1</td>
</tr>
<tr>
<td>7.3.2</td>
</tr>
<tr>
<td>7.3.3</td>
</tr>
<tr>
<td>7.3.3.1</td>
</tr>
<tr>
<td>7.3.3.2</td>
</tr>
<tr>
<td>7.3.3.3</td>
</tr>
<tr>
<td>7.3.3.4</td>
</tr>
<tr>
<td>7.3.4</td>
</tr>
<tr>
<td>7.3.5</td>
</tr>
<tr>
<td>7.4</td>
</tr>
<tr>
<td>7.4.1</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>8.1</td>
</tr>
<tr>
<td>8.2</td>
</tr>
</tbody>
</table>
8.3 Συνοπτική Παρουσίαση των Επιπτώσεων από τη μη υλοποίηση του έργου……………………………………102
8.4 Σύγκριση της Κατάστασης με το Έργο και Χωρίς το Έργο……………………………………………………103
Επεξήγηση συμβόλων:………………………………………………………………………………………………103
9 ΠΡΟΓΡΑΜΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ / ΔΙΑΧΕΙΡΙΣΗ………………………………………………104
9.1 Εισαγωγή………………………………………………………………………………………………………104
9.2 Παρακολούθηση υλοποίησης των περιβαλλοντικών μέτρων………………………………………………104
9.3 Πρόγραμμα παρακολούθησης στη φάση κατασκευής…………………………………………………105
9.3.1 Οργάνωση Εργοταξίου ……………………………………………………………………………………105
9.3.2 Απόβλητα …………………………………………………………………………………………………105
9.3.3 Αέριες εκπομπές…………………………………………………………………………………………106
9.3.4 Θόρυβος……………………………………………………………………………………………………106
9.3.5 Βιολογικό περιβάλλον……………………………………………………………………………………106
9.3.6 Υδρολογικές συνθήκες …………………………………………………………………………………107
9.4 Πρόγραμμα παρακολούθησης στη Φάση Λειτουργίας………………………………………………107
9.4.1 Βιολογικό περιβάλλον……………………………………………………………………………………108
10 ΒΙΒΛΙΟΓΡΑΦΙΑ…………………………………………………………………………………………………109
11 ΠΑΡΑΡΤΗΜΑΤΑ…………………………………………………………………………………………………112
ΠΑΡΑΡΤΗΜΑ 1. Χάρτες……………………………………………………………………………………………113

ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ
Εικόνα 1: Χώρος Ηλεκτροκατασκευαστικού σταθμού Βασιλικού και εκκίνησης της νέας γραμμής μεταφοράς……………………………………………………………………………………………………30
Εικόνα 2: Ηλεκτροπαραγωγικού σταθμού Μονής και κατάληξης της νέας γραμμής μεταφοράς……30
Εικόνα 3: Παράδειγμα τυπικού πυλών του ΑΗΚ ………………………………………………………………33
Εικόνα 4: Φυτοκαλώσεις της περιοχής Μελέτης………………………………………………………………60
Εικόνα 5: Φυτοκαλώσεις της περιοχής Μελέτης………………………………………………………………60
Εικόνα 6: Ενδεικτική συνδετική οργάνωση εργοταξίου……………………………………………………91
Εικόνα 7: Υγιεινοποιημένα διευκολύνσεις σε έργα εργοτάξια……………………………………………94
Εικόνα 8: Παράδειγμα διαχείρισης επικινδύνων αποβλήτων…………………………………………95
ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ

Πίνακας 1: Μήτρα επιπτώσεων (impact matrix) κατά την κατασκευή του έργου 14
Πίνακας 2: Μήτρα επιπτώσεων κατά την λειτουργία (impact matrix) 15
Πίνακας 3: Κατάλογος χρησιμοποιημένου εξοπλισμού .. 32
Πίνακας 4: Κατανάλωση καυσίμου κατά το στάδιο των έργων κατασκευής (lt) 34
Πίνακας 5: Ορία έκθεσης ηλεκτρικού πεδίου για τον ανθρώπινο οργανισμό 36
Πίνακας 6: Ορία έκθεσης μαγνητικού πεδίου για τον ανθρώπινο οργανισμό 36
Πίνακας 7: Αναμενόμενα επίπεδα θορύβου από κατασκευαστικά έργα 40
Πίνακας 8: Ορία έκθεσης θορύβου για τον ανθρώπινο οργανισμό 40
Πίνακας 9: Αναμενόμενα επίπεδα θορύβου από κατασκευαστικά έργα 40
Πίνακας 10: Σύσταση των παραγόμενων ΑΕκΚ ... 43
Πίνακας 11: Είδη Αποβλήτων κατασκευών και μέθοδος διάθεσης 44
Πίνακας 12: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 13: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 14: Μηνιαία Κλιματολογικά Στατιστικά Στοιχεία (2000-2009) 54
Πίνακας 15: Μεγιστή επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 16: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 17: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 18: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 19: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 20: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 21: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 22: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 23: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 24: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 25: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 26: Μέγιστη επιτάχυνση εδάφους ανά ζώνη .. 51
Πίνακας 27: Μήτρα επιπτώσεων κατά την λειτουργία (impact matrix) 101
Πίνακας 28: Μήτρα επιπτώσεων (impact matrix) από τη μη υλοποίηση του έργου 102
Πίνακας 29: Μήτρα σύγκρισης επιπτώσεων μεταξύ μη υλοποίησης και υλοποίησης του έργου ... 103
Πίνακας 30: Δείκτης παρακολούθησης αιωρούμενης σκόνης.. 106
Πίνακας 31: Δείκτης παρακολούθησης θορύβου .. 106
Πίνακας 32: Δείκτης παρακολούθησης Χλωρίδας .. 107
Πίνακας 33: Δείκτης παρακολούθησης Πανίδας.. 107
Πίνακας 34: Δείκτης παρακολούθησης Πανίδας.. 108
1 ΜΗ ΤΕΧΝΙΚΗ ΠΕΡΙΛΗΨΗ

1.1 Εισαγωγή

Στόχος του έργου είναι η ετοιμασία Μελέτης Εκτίμησης των Επιπτώσεων στο Περιβάλλον από τα έργα κατασκευής γραμμής μεταφοράς ηλεκτρισμού (αναβάθμιση υφιστάμενης γραμμής στην ίδια ακριβώς πορεία) από την περιοχή Βασιλικού μέχρι την περιοχή Μονή. Η νέα γραμμή μεταφοράς θα είναι κατασκευής 132 kV διπλού κυκλώματος σε πυλώνες με αγωγούς RUBUS 486mm² μήκους περίπου 10.73 km. Η γραμμή θα κατασκευαστεί από την Αρχή Ηλεκτρισμού Κύπρου (ΑΗΚ).

Σκοπός της παρούσας περιβαλλοντικής μελέτης είναι ο εντοπισμός και η καταγραφή των αρνητικών και θετικών επιπτώσεων του έργου σε όλους τους τομείς της περιοχής εγκατάστασης και η διαμόρφωση μέτρων για την αποφυγή και ελαχιστοποίηση των επιπτώσεων όπου αυτό είναι δυνατό.

Η Μελέτη έχει συνταχθεί σύμφωνα με τις απαιτήσεις του νόμου 140(1)/2005 «Περί της Εκτίμησης Επιπτώσεων στο Περιβάλλον από Ορισμένα Έργα», και θα υποβληθεί στην αρμόδια περιβαλλοντική Αρχή για αξιολόγηση.

1.2 Επιπτώσεις κατά την Κατασκευή

1.2.1 Επιπτώσεις στην Ποιότητα της Ατμόσφαιρας

Το έργο αναμένεται ότι θα δημιουργήσει αύξηση της σκόνης κατά τη διάρκεια της κατασκευής με τις συγκεντρώσεις αιωρούμενων σωματιδίων PM10 να ξεπερνούν τα μέγιστα επιτρεπόμενα όρια κατά τις περιόδους χωματουργικών έργων για αποστάσεις της τάξης των 300-500 μέτρων. Παρόλα αυτά, η απουσία ευαίσθητων χρήσεων και η μικρή διάρκεια συντείνουν ούτως ώστε να μην υπάρξουν ενοχλήσεις ή οποιαδήποτε άλλα προβλήματα.
1.2.2 Επιπτώσεις στο ακουστικό περιβάλλον

Για την παρούσα μελέτη σαν μέγιστος αποδεκτός θόρυβος από κατασκευαστικά έργα κατά την ημέρα (07.00 – 16.00) θεωρείται το επίπεδο των 75 dB LAeq (9 hour). Το έργο βρίσκεται σε απόσταση 15 μέτρων από το πλησιέστερο υποστατικό και 43 μέτρων από οικίες, οι οποίες σημειώνεται ότι βρίσκονται εκτός οικιστικής ζώνης. Επίσης, οι θέσεις των πυλών βρίσκονται σε απόσταση από το πλησιέστερο υποστατικό 90 μέτρα και από την πλησιέστερη κατοικία σε απόσταση 140 μέτρων. Για το υπόλοιπο της ημέρας θεωρείται ότι δεν θα υπάρχουν κατασκευαστικά έργα.

Εκτιμάται ότι κατά τη διάρκεια των έργων θα υπάρχουν αυξημένα επίπεδα θορύβου σε απόσταση μέχρι και 300 μέτρα της τάξης των 58-73 dBA (1hr). Τα επίπεδα αυτά δεν ξεπερνούν τα επιτρεπόμενα ορία. Λαμβανομένου υπόψη ότι όλες οι επηρεαζόμενες περιοχές δεν παρουσιάζουν άλλες πηγές θορύβου, τα αναμενόμενα επίπεδα θορύβου συνιστούν επιβάρυνση πέραν των 10 dBA από τις τιμές υποβάθρου. Εντός της απόστασης αυτής όμως, δεν έχουν εντοπιστεί ευαίσθητες χρήσεις οπότε δεν θα υπάρξει ενόχληση.

1.2.3 Δημιουργία Στερεών Αποβλήτων

Κατά την εγκατάσταση των νέων πυλών θα αναμένεται η δημιουργία περίπου 8 m³ μπάζων για κάθε πυλώνα. Η εναπόθεση των μπάζων θα πρέπει να γίνει εκτός περιοχής και σε αδειοδοτημένες εγκαταστάσεις. Επίσης, επειδή οι προηγούμενοι πυλώνες πρόκειται να απομακρυνθούν θα υπάρχει επιπλέον δημιουργία μπάζων από την απομάκρυνση των χαλύβδινων πυλών και των θεμέλιων αυτών.

Από τα θεμέλια των υφιστάμενων πυλώνων εμβαδόν 0,60m επί 0,60m και σε βάθος 0,60m κάτω από την επιφάνεια του εδάφους και άλλα 0,15m πάνω από το έδαφος θα αραφεθούν. Συνολικά θα έχουμε 1,08m³ μπάζα από μπετόν ανά πυλώνα.

Επιπλέον, οι υφιστάμενοι χαλύβδινοι πυλώνες πρόκειται να απομακρυνθούν αφού κρίθηκαν ακατάλληλοι να επαναχρησιμοποιηθούν γιατί δεν θα μπορούν να καλύψουν τις
απατήσεις της αναβάθμισης και επίσης αρκετοί από τους πυλώνες λόγω τις κοντινής απόστασης από την θάλασσα έχουν υποστεί διαβρώσεις.

Τα στερεά απόβλητα που θα δημιουργηθούν από το έργο θα διαχειριστούν σωστά από τον εργολάβο του έργου με βάση τις διατάξεις που προβλέπει η σχετική νομοθεσία αφού αυτό θα είναι ένας από τους όρους στην σύμβαση μεταξύ αυτού και της ΑΗΚ.

1.2.4 Επιπτώσεις στο Οδικό Δίκτυο και στη Δημόσια Υποδομή

Η οδική προσβασιμότητα της περιοχής δεν θα επηρεαστεί κατά το στάδιο κατασκευής/συναρμολόγησης των πυλώνων της νέας γραμμής. Συνεπώς αναμένεται ότι δεν θα υπάρξει ενόχληση κατά τις μετακινήσεις του τοπικού πληθυσμού στις περιοχές αυτές και δεν θα υπάρξει η ανάγκη χρήσης εναλλακτικών διαδρομών διακίνησης.

1.2.5 Επιπτώσεις στο Βιολογικό Περιβάλλον

Οι σημαντικότερες επιπτώσεις στο βιολογικό περιβάλλον της περιοχής αναμένεται να προέλθουν από τις κατασκευαστικές εργασίες για την εγκατάσταση των πυλώνων καθώς και για τη δημιουργία προσβάσεων προς τους χώρους όπου θα εγκατασταθούν οι πυλώνες.

Οι επιπτώσεις από την διάνοιξη δρόμων αναμένεται να μετριαστούν από το γεγονός ότι οι περισσότερες θέσεις εγκατάστασης των πυλώνων βρίσκονται κοντά σε υφιστάμενους ασφάλτινους και χωμάτινους δρόμους. Όποτε και οι προσβάσεις που θα διανοιχτούν θα έχουν μικρό μήκος.

1.2.6 Επιπτώσεις στη Γεωμορφολογία και Υδρολογία της Περιοχής

Τα κατασκευαστικά έργα αναμένεται να δημιουργήσουν μπάζα ως αποτέλεσμα της εγκατάστασης των καινούργιων πυλώνων, από την αφαίρεση των βάσεων των υφιστάμενων πυλώνων καθώς και διάνοιξης προσβάσεων προς τις θέσεις των πυλώνων. Ιδιαίτερη σημασία θα πρέπει να δοθεί στις θέσεις των πυλώνων 3, 5 έως 6, 12 έως 15 και 25 έως 27 όπου οι εργασίες πρόσβασης στην περιοχή εγκατάστασης των πυλώνων θα
έχει άμεση επίρροη στην γεωμορφολογία της περιοχής. (βλ. Χάρτη Θέσεις Πυλώνων, Παράρτημα 1, Αρ. Σχεδίου 13).

1.3 Επιπτώσεις κατά τη Λειτουργία

1.3.1 Επιπτώσεις στο Ανθρωπογενές Περιβάλλον
Η εγκατάσταση γραμμών μεταφοράς προϋποθέτει την απαγόρευση ανάπτυξης της γης σε ακτίνα 20 μέτρων ένθεν και ένθεν των γραμμών. Η συνολική έκταση που επηρεάζεται στο παρόν έργο υπολογίστηκε σε 429200 τετραγωνικά μέτρα. Στην έκταση αυτή εμπίπτουν ζώνες ειδικής προστασίας, ζώνες (Ζ1, Ζ2) στις οποίες επιτρέπεται η ανέγερση υποστατικών εκτροφής ζώων καθώς και αγροτικές/γεωργικές ζώνες (Γ3, Γα4, Γα5).

1.3.2 Υδρογεωλογικές Συνθήκες - Ρύπανση των Υδάτων και του Εδάφους
Η λειτουργία του έργου δεν επηρεάζει την υδρογεωλογία και την ποιότητα των επιφανειακών και υπόγειων νερών ή τα εδάφη της περιοχής του έργου.

1.3.3 Βιολογικό Περιβάλλον
Από τη λειτουργία του έργου δεν προκύπτουν κίνδυνοι ή οποιεσδήποτε αρνητικές επιπτώσεις στην χλωρίδα της περιοχής. Επίσης δεν προκύπτουν σημαντικές επιπτώσεις στην πτηνοπανίδα της περιοχής, καθώς και στα μεταναστευτικά είδη που διέρχονται από την περιοχή. Ελαφρά θετική επίπτωση μπορεί να θεωρηθεί το γεγονός ότι τα ηλεκτροφόρα καλώδια χρησιμοποιούνται ως σταθμός των πτηνών.

1.3.4 Ηλεκτρομαγνητικά Πεδία
Οι επιπτώσεις στην υγεία από τα ηλεκτρικά και μαγνητικά πεδία αποτελούν θέμα μελέτης εδώ και πολλά χρόνια χωρίς να έχει εξαχθεί κοινά αποδεκτά συμπέρασμα ως προς το μέγεθος ή τη φύση των κινδύνων για τον άνθρωπο. Για προληπτικούς λόγους όμως, αλλά και από σεβασμό για τις ανησυχίες του κοινού γύρω από το θέμα, διάφοροι οργανισμοί έχουν καθορίσει μέγιστα αποδεκτά όρια ηλεκτρικών και μαγνητικών πεδίων.
Μελέτη Περιβαλλοντικών Επιπτώσεων από τη νέα Γραμμή Ηλεκτρισμού «Βασιλικό-Μονή»

tα οποία εκτιμούνται να προστατεύουν το κοινό προσφέροντας ‘ικανοποιητικό περιθώριο ασφάλειας’.

Σύμφωνα με μετρήσεις που εκπονήθηκαν από την Αρχή Ηλεκτρισμού σε υφιστάμενες, ιδίας τάσης γραμμές της, τα επίπεδα που θα προκύπτουν είναι σαφώς χαμηλότερα από τα επιτρεπόμενα όρια. Η τιμή των ορίων αυτών είναι περίπου 100 μΤ (European Union, International Commission on Non-Ionizing Radiation Protection) η οποία είναι και η χαμηλότερη των μέγιστων αποδεκτών ορίων για συνεχή έκθεση σε ηλεκτρομαγνητικά πεδία. Σε αυτό το σημείο πρέπει να αναφερθεί ότι η ΑΗΚ έχει προχωρήσει στην προσεκτική χάραξη της πορείας του έργου ώστε να διέρχεται από περιοχές όπου δεν υπάρχει σημαντική και ευαίσθητη ανθρωπική παρουσία. Έτσι από άποψης προστασίας της υγείας του κοινού, η γραμμή αξιολογείται ότι θα έχει κατάλληλες και ασφαλείς επιδόσεις.

1.3.5 Θόρυβος
Από τη λειτουργία του έργου δεν προκύπτουν ενοχλητικά επίπεδα θορύβου. Μοναδική πηγή είναι θορύμαιο αποτελεί το Corona effect. Το φαινόμενο παρουσιάζεται περιοδικά κάτω από κατάλληλες κλιματολογικές συνθήκες, δηλαδή σε περιόδους αυξημένης σκόνης και υγρασίας. Τα επίπεδα του θορύβου μπορούν να ανέλθουν στην τάξη των 65dBA και τυπικά επηρεάζουν αποστάσεις μικρότερες από 100 μέτρα. Στην απόσταση αυτή δεν εντοπίζονται αναπτύξεις ή άλλες ευαίσθητες χρήσεις οπόταν κατά τη λειτουργία δεν προβλέπονται ενοχλήσεις.

1.3.6 Κοινωνιοοικονομικό Περιβάλλον
Από κοινωνιοοικονομικής άποψης το έργο είναι αναμφίσβητα επωφελές αφού αφορά στη διασφάλιση της παροχής ηλεκτρικής ενέργειας σε αστικά συμπλέγματα και οικονομικές δραστηριότητες. Αν και η ανάγκη παροχής ηλεκτρικής ενέργειας υπερτερεί των οποιονδήποτε αρνητικών κοινωνικών επιπτώσεων, θα πρέπει να αναφερθούν οι αρνητικές κοινωνικές επιπτώσεις ούτως ώστε να μπορούν να λαμβάνονται υπόψη με στόχο την βελτιστοποίηση του σχεδιασμού και τη διασφάλιση της ισότιμης
αντιμετώπισης των πολιτών. Κυριότερες αρνητικές επιπτώσεις είναι η μείωση του
dικαιώματος ανάπτυξης της γης σε απόσταση 20 μέτρων ένθεν και ένθεν της γραμμής
μεταφοράς καθώς και η αρνητική ψυχολογία που συχνά δημιουργεί η παρουσία γραμμών
ψηλής τάσης όταν βρίσκονται κοντά σε κατοικημένες περιοχές. Στην περίπτωση του
έργου που μελέτηθηκε η δεύτερη επίπτωση δεν αποτελεί πρόβλημα αφού η γραμμή δεν
dιασχίζει κατοικημένες περιοχές.

1.3.7 Τοπίο και αισθητικές αξίες
Η παρουσία των πυλώνων της νέας γραμμής μεταφοράς αναμένεται να επηρεάσει
αρνητικά την αισθητική του τοπίου κατά μήκος της διαδρομής της νέας γραμμής. Η
οπτική ρύπανση είναι μικρή μεταξύ των πυλών 3-14, 24-26 και 31-34 καθώς το οπτικό
πεδίο κυριαρχείται από τον αυτοκινητόδρομο Λευκωσίας-Λεμεσού.

Σε ότι αφορά την αισθητική πτυχή του έργου αρνητικά αναμένεται να επηρεαστεί η
περιοχή των πυλών 1-2, 15-23 και 27-30 και ιδιαίτερα στις περιοχές κοντά στις
κορυφογραμμές, δηλ. στις περιοχές των πυλών 16-18 και 27-29 (βλ. Χάρτη Θέσεις
Πυλώνων, Παράρτημα 1, Αρ. Σχεδίου 13).

Για τον μετριασμό των επιπτώσεων του έργου στην αισθητική του τοπίου θα πρέπει να
gίνει προσεκτική χοροθέτηση των πυλών κατά μήκος του έργου ώστε να μην γίνεται
τοποθέτηση τους σε κορυφογραμμές ή άλλα σημεία ορατά από τους κατοίκους της
περιοχής καθώς και από τον διερχόμενο πληθυσμό.
1.4 Συνοπτική Παρουσίαση των Επιπτώσεων κατά την κατασκευή

Πίνακας 1: Μήτρα επιπτώσεων (impact matrix) κατά την κατασκευή του έργου.

<table>
<thead>
<tr>
<th>ΕΙΔΟΣ</th>
<th>ΕΙΔΟΣ</th>
<th>ΜΕΓΕΘΟΣ</th>
<th>ΔΙΑΡΚΕΙΑ</th>
<th>ΑΝΑΤΑΞΗ</th>
<th>ΑΝΤΙΜΕΤΩΠΙΣΗ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td>ΘΕΤΙΚΕΣ</td>
<td>ΑΡΝΗΤΙΚΕΣ</td>
<td>ΑΡΝΗΤΙΚΕΣ</td>
<td>ΜΕΤΡΙΕΣ</td>
<td>ΜΑΚΡΟΧΡΟΝΙΕΣ</td>
</tr>
<tr>
<td>ΟΥΛΕΤΕΡΕΣ</td>
<td>ΟΥΛΕΤΕΡΕΣ</td>
<td>ΑΣΦΑΛΕΙΕΣ</td>
<td>ΑΣΦΑΛΕΙΕΣ</td>
<td>ΕΣΚΥΡΕΣ</td>
<td>ΒΡΑΧΥΧΡΟΝΙΕΣ</td>
</tr>
<tr>
<td>ΑΘΡΟΙΣΤΗΣ</td>
<td>ΑΘΡΟΙΣΤΗΣ</td>
<td>ΜΑΥΡΟΙΦΩΝΩΣ</td>
<td>ΜΑΥΡΟΙΦΩΝΩΣ</td>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
</tr>
<tr>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td>ΑΝΤΙΜΕΤΩΠΙΣΗΣ</td>
<td>ΑΝΤΙΜΕΤΩΠΙΣΗΣ</td>
</tr>
<tr>
<td>ΜΗ ΑΝΑΣΤΡΕΨΗ</td>
<td>ΜΗ ΑΝΑΣΤΡΕΨΗ</td>
<td>ΜΗ ΑΝΤΙΜΕΤΩΠΙΣΗ</td>
<td>ΜΗ ΑΝΤΙΜΕΤΩΠΙΣΗ</td>
<td>MH ΑΝΤΙΜΕΤΩΠΙΣΗ</td>
<td>MH ΑΝΤΙΜΕΤΩΠΙΣΗ</td>
</tr>
</tbody>
</table>

ΕΔΑΦΟΣ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΧΑΛΑΝΤΗΣ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΕΝΗΧΟΣ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΚΙΝΗΤΙΚΟΣ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΚΟΙΝΩΝΙΚΟ ΠΟΡΟΙ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΑΡΧΕΙΟ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΑΝΑΓΝΩΡΙΣΗ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΑΝΤΙΠΑθΕΙΑ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΕΝΗΧΟΣ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΜΗ ΚΟΙΝΩΝΙΚΟΣ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
ΚΟΙΝΩΝΙΚΟΣ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ	ΧΧΧΧΧ
1.5 Συνοπτική Παρουσίαση των Επιπτώσεων κατά τη Λειτουργία

Πίνακας 2: Μήτρα επιπτώσεων κατά την λειτουργία (impact matrix)

<table>
<thead>
<tr>
<th>ΕΙΔΟΣ</th>
<th>ΕΔΑΦΟΣ</th>
<th>ΑΕΡΑΣ</th>
<th>ΕΠΙΦΑΝΕΙΑΚΑ ΝΕΡΑ</th>
<th>ΥΠΟΓΕΙΑ ΝΕΡΑ</th>
<th>ΧΛΩΡΙΔΑ</th>
<th>ΠΑΝΙΔΑ</th>
<th>ΑΚΟΥΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ</th>
<th>ΧΡΗΣΗ ΓΗΣ</th>
<th>ΦΥΣΙΚΟΙ ΠΟΡΟΙ</th>
<th>ΚΟΙΝΩΝΙΚΟΟΙΚΟΝΟΜΙΚΑ</th>
<th>ΜΕΤΑΦΟΡΕΣ ΚΑΙ ΚΥΚΛΟΦΟΡΙΑ</th>
<th>ΑΝΘΡΩΠΙΝΗ ΥΓΕΙΑ</th>
<th>ΑΙΣΘΗΤΙΚΗ</th>
<th>ΤΟΥΡΙΣΜΟΣ ΑΝΑΨΥΧΗ</th>
<th>ΠΟΛΙΤΙΣΤΙΚΗ ΚΑΙ ΠΟΛΙΤΙΚΟ ΚΛΗΡΟΝΟΜΙΑ</th>
<th>ΑΝΤΙΜΕΤΩΠΙΣΗ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td>ΟΥΣΙΑΣΤΙΚΕΣ</td>
<td>ΑΡΝΗΤΙΚΕΣ</td>
<td>ΑΣΘΕΝΕΙΣ</td>
<td>ΜΕΤΡΙΕΣ</td>
<td>ΙΣΧΥΡΕΣ</td>
<td>ΒΡΑΧΥΧΡΟΝΙΕΣ</td>
<td>ΜΑΚΡΟΧΡΟΝΙΕΣ</td>
<td>ΑΝΑΣΤΡΕΨΙΜΕΣ</td>
<td>ΜΗ ΑΝΑΣΤΡΕΨΙΜΕΣ</td>
<td>ΑΝΑΣΤΡΕΨΙΜΕΣ</td>
<td>ΜΗ ΑΝΑΣΤΡΕΨΙΜΕΣ</td>
<td>ΑΝΑΣΤΡΕΨΙΜΕΣ</td>
<td>ΜΗ ΑΝΑΣΤΡΕΨΙΜΕΣ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ΕΛΑΦΟΣ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΑΕΡΑΣ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΕΠΙΦΑΝΕΙΑΚΑ ΝΕΡΑ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΥΠΟΓΕΙΑ ΝΕΡΑ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΧΛΩΡΙΔΑ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΠΑΝΙΔΑ</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΑΚΟΥΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΧΡΗΣΗ ΓΗΣ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΦΥΣΙΚΟΙ ΠΟΡΟΙ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΚΟΙΝΩΝΙΚΟΟΙΚΟΝΟΜΙΚΑ</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΜΕΤΑΦΟΡΕΣ ΚΑΙ ΚΥΚΛΟΦΟΡΙΑ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΑΝΘΡΩΠΙΝΗ ΥΓΕΙΑ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΑΙΣΘΗΤΙΚΗ</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΤΟΥΡΙΣΜΟΣ ΑΝΑΨΥΧΗ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΠΟΛΙΤΙΣΤΙΚΗ ΚΑΙ ΠΟΛΙΤΙΚΟ ΚΛΗΡΟΝΟΜΙΑ</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
1.6 Συμπεράσματα

Με βάση τα αποτελέσματα οι μελετητές θεωρούν ότι το έργο δεν θα επιφέρει αρνητικές επιπτώσεις στο περιβάλλον της περιοχής μελέτης. Σε αυτό προστίθεται φυσικά το γεγονός ότι το έργο υποβοηθά στο στόχο της ΑΗΚ για την καλύτερη διανομή ηλεκτρικού ρεύματος στην Κυπριακή επικράτεια με επακόλουθες θετικές επιπτώσεις σε οικονομικές δραστηριότητες και στην ανάπτυξη των αστικών περιοχών.

Παρόλα τα θετικά στοιχεία του έργου θα πρέπει να τονιστεί ότι η νέα γραμμή μεταφοράς ηλεκτρικής ενέργειας δημιουργεί κινδύνους και επιπτώσεις στην χλωρίδα της περιοχής καθώς και την αισθητική του τοπίου. Οι κίνδυνοι αυτοί είναι μικροί και αντιμετωπίσιμοι στην μεγαλύτερη περίοδο. Συνεπώς, είναι κρίσιμο όπως όλα τα προτεινόμενα μέτρα υλοποιηθούν ενώ θα πρέπει να εφαρμόζεται αυστηρά το πρόγραμμα παρακολούθησης ώστε να εντοπίζονται και να αντιμετωπίζονται τα οποιαδήποτε προβλήματα έγκαιρα.
2 ΜΕΛΕΤΗΤΕΣ ΚΑΙ ΕΙΔΙΚΟΙ ΟΡΟΙ ΣΥΝΕΡΓΑΣΙΑΣ
Πιο κάτω περιγράφονται η Ομάδα Μελέτης του έργου και τα καθήκοντα των Βασικών και των λοιπών εμπειρογνωμόνων.

2.1 Ειδικότητες και καθήκοντα των Μελετητών
Πιο κάτω γίνεται μια σύντομη περιγραφή των καθηκόντων του εκάστοτε μέλους της Ομάδας Μελέτης.

Χαράλαμπος Παναγιώτου - Περιβαλλοντική Μηχανική
Ο κυρ. Χαράλαμπος Παναγιώτου είναι Επιστήμονας Περιβάλλοντος (Περιβαλλοντολόγος) και κατέχει επίσης μεταπτυγματικό στην Μετεωρολογία. Έχει ασχοληθεί κατά κύριο ρόλο με Μελέτες Εκτίμησης των Επιπτώσεων στο Περιβάλλον και γενικά όλων των περιβαλλοντικών διαχειρισμών. Μεταξύ άλλων συμμετείχε στην εκπόνηση των Μελετών Εκτίμησης Επιπτώσεων και τον Βασιλικό, όπως και σε σωρεία άλλων Μελετών Εκτίμησης Επιπτώσεων στο Περιβάλλον. Επιπρόσθετα συμμετείχε σε σειρά άλλων έργων όπως στο ερευνητικό έργο OPTIMA (χρηματοδοτούμενο από το INCO FP6) που αφορούσε στην ανάπτυξη, και εφαρμογή ολοκληρωμένου συστήματος διαχείρισης υδάτινων πόρων με βάση τις απαιτήσεις της οδηγίας (2000/60/EC), σε ερευνητικό έργο χρηματοδοτούμενο από το Πρόγραμμα Marie Curie το οποίο αφορά στην ανάπτυξη υδρολογικού μοντέλου της Κύπρου με την προσαρμογή του λογισμικού Συστήματος BASINS, τη μελέτη εκτίμησης των επιπτώσεων στο υδατικό ισοζύγιο, την ποιότητα του νερού και την οικολογία της Αλυκής Λάρνακας από το πρωτεινόμενο σύστημα αποχέτευσης όμβριων υδάτων κλπ. Τέλος έχει συμμετάσχει σε πολλά Εμπειρογνώμονας στα τομέα της βιοποικιλότητας και της Πολιτικής Διαχείρισης των Παράλλων Περιοχών (Coastal Action Management Plan) της Κύπρου.

Ο κος Παναγιώτου έχει μεταπτυχιακό στη συνοριακή μετεωρολογία και σημαντική εμπειρία στην εφαρμογή μοντέλων διασποράς στην ατμόσφαιρα και τα επιφανειακά νερά.
Στη μελέτη αυτή πέραν των καθηκόντων του ως Υπεύθυνος Έργου, εξέτασε τις περιβαλλοντικές επιπτώσεις από τη χωροθέτηση, κατασκευή και λειτουργία του προτεινόμενου έργου σε θέματα των ειδικοτήτων του και πρότεινε σε συνεργασία με τα υπόλοιπα μέλη της Ομάδας, λύσεις για μετριασμό των επιπτώσεων. Επίσης ανέλαβε το συντονισμό και αξιολόγηση της εφαρμογής του μοντέλου για την προσομοίωση της διασποράς της άλμης στη θάλασσα.

Δρ Κώστας Ανδρέου-Γεωπόνος/ Περιβαλλοντολόγος
Ο Δρ Κώστας Ανδρέου έχει πτυχίο στη Γεωπονία και διδακτορικό (PhD) στις επιστήμες περιβάλλοντος. Έχει ασχοληθεί με την καταγραφή του χερσαίου περιβάλλοντος και τη διαχείριση της βιοποικιλότητας. Στο παρόν έργο ασχολήθηκε με την καταγραφή και αξιολόγηση της χερσαίας χλωρίδας και την εκτίμηση επιπτώσεων σε αυτήν κατά την κατασκευή και λειτουργία. Επίσης συνέβαλε στη διαμόρφωση μέτρων ελαχιστοποίησης με εισηγήσεις μέτρων προστασίας, διατήρησης και επαναφοράς της χλωρίδας σε υποβαθμισμένους χώρους και γυμνά πρανή που προκύπτουν από το έργο.

Πάνος Κακονίτης-Διπλωματούχος Πολιτικός Μηχανικός Α.Π.Θ
Ο Πάνος Κακονίτης έχει αποφοιτήσει από το Δημοκρίτειο Πανεπιστήμιο Θράκης τον Απρίλιο του 2005. Κατέχει δίπλωμα Πολιτικής Μηχανικής και αναγνώριση της διπλωματικής του εργασίας ως ισότιμη επιπέδου Master. Ακολούθως παρακολούθησε μεταπτυχιακό πρόγραμμα στον Περιβαλλοντικό Σχεδιασμό και Μηχανική στο University College London (UCL) στο Ηνωμένο Βασίλειο. Επίσης το 2008 απέκτησε τον τίτλο Πιστοποιητής Κτηριακής Αξιολόγησης «LEED Accredited Professional».
Επίσης το 2005, τελείωσε το Πανεπιστήμιο Παυλίνας Κύπρου και επανεπαγγελματίζεται ως Αρχιτέκτονας. Επίσης το 2008 απέκτησε τον τίτλο Πιστοποιητής Κτηριακής Αξιολόγησης «LEED Accredited Professional».
Στο παρόν έργο ασχολήθηκε με την καταγραφή και αξιολόγηση της χερσαίας χλωρίδας και την εκτίμηση επιπτώσεων σε αυτήν κατά την κατασκευή και λειτουργία. Επίσης συνέβαλε στη διαμόρφωση μέτρων ελαχιστοποίησης με εισηγήσεις μέτρων προστασίας, διατήρησης και επαναφοράς της χλωρίδας σε υποβαθμισμένους χώρους και γυμνά πρανή που προκύπτουν από το έργο.
Στο παρόν έργο ασχολήθηκε με την περιγραφή του έργου, στην περιγραφή της περιοχής, στην αξιολόγηση των περιβαλλοντικών επιπτώσεων και στην υποβολή μέτρων άμβλυνσης των επιπτώσεων.

Ειρήνη Ελευθερίου- Διπλωματούχος Χημικός Μηχανικός Ε.Μ.Π
Η Ελευθερίου Ειρήνη έχει αποφοιτήσει από το Εθνικό Μετσόβιο Πολυτεχνείο Αθήνας τον Ιούλιο του 2008. Κατέχει δίπλωμα στην Χημική Μηχανική και αναγνώριση της διπλωματικής της εργασίας ως ισότιμη επιπέδουMaster. Στο παρόν στάδιο εργάζεται στην Ατλαντίς Συμβουλευτική Κύπρου και είναι υπεύθυνη μεταξύ άλλων για την εκπόνηση Μελετών Περιβαλλοντικών Επιπτώσεων, την Περιβαλλοντική Παρακολούθηση όπως τις μετρήσεις θορύβου και την εκπόνηση Συστημάτων Περιβαλλοντικών Διαχείρισης (ISO14000, EMAS). Επίσης, δραστηριοποιείται στον τομέα της διαχείρισης και διάθεσης επικίνδυνων αποβλήτων μέσω της Envirochem Cyprus Ltd. Στο παρόν έργο ασχολήθηκε με την αξιολόγηση των περιβαλλοντικών επιπτώσεων και στην υποβολή μέτρων άμβλυνσης των επιπτώσεων.

Τουμαζής Τουμαζής- Γεωλόγος, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Ο κος Τουμαζής αποφοίτησε από το Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης με πτυχίο Γεωλογίας. Οι αρμοδιότητές του στην ΑΤΛΑΝΤΙΣ ΣΥΜΒΟΥΛΕΥΣΙΚΗ ΚΥΠΡΟΥ μεταξύ άλλων είναι η χρήση των γεωλογικών δεδομένων με χρήση GIS, σχεδιασμός χαρτών, προετοιμασία περιβαλλοντικών μελετών, χαρτογραφήσεις στο ύπαιθρο και γενικά καθήκοντα ως γεωλόγος
Στο παρόν στάδιο εργάζεται στην Ατλαντίς Συμβουλευτική Κύπρου και είναι υπεύθυνος μεταξύ άλλων για την εκπόνηση Μελετών Περιβαλλοντικών Επιπτώσεων (ΜΕΕΠ, ΠΕΕΠ, Άδειες Απόρριψης Αποβλήτων, Άδειες Διαχείρισης Αποβλήτων, κτλ.), στην παροχή υπηρεσιών πάνω σε θέματα βιώσιμης ανάπτυξης, εξοικονόμησης ενέργειας και σε θέματα ανανέωσιμων πηγών ενέργειας.
Στο παρόν έργο ασχολήθηκε με την γεωλογία, γεωμορφολογία και υδρολογία της περιοχής και στην αξιολόγηση των περιβαλλοντικών επιπτώσεων.
ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΜΕΛΕΤΗΣ

Στόχος του έργου είναι η ετοιμασία Μελέτης Εκτίμησης των Επιπτώσεων στο Περιβάλλον από τα έργα κατασκευής γραμμής μεταφοράς ηλεκτρισμού (αναβάθμιση υφιστάμενης γραμμής στην ίδια ακριβώς πορεία) από την περιοχή Βασιλικού μέχρι την περιοχή Μονή. Η νέα γραμμή μεταφοράς θα είναι κατασκευής 132 kV διπλού κυκλώματος σε πυλώνες με αγωγούς RUBUS 486mm² μήκους περίπου 10.73 km. Η θέση αναχώρησης της γραμμής θα είναι από τον ηλεκτροπαραγωγό υποσταθμό Βασιλικού και η θέση κατάληξης της θα είναι ο ηλεκτροπαραγωγός υποσταθμός στην Μονή.

Η Μελέτη έχει συνταχθεί σύμφωνα με την ισχύουσα νομοθεσία και θα υποβληθεί στην αρμόδια περιβαλλοντική Αρχή για αξιολόγηση. Επιμέρους στόχοι της μελέτης είναι οι εξής:

• Ο εντοπισμός και αναγνώριση των παραγόντων και στοιχείων που επηρεάζουν την οικολογική ισορροπία της περιοχής, την ποιότητα ζωής και την υγεία του πληθυσμού, την πολιτιστική παράδοση και τις αισθητικές αξίες.

• Ο τεκμηριωμένος εντοπισμός των αναμενόμενων, από την κάθε πιθανή θέση/πορεία εγκατάστασης της γραμμής μεταφοράς, θετικών και αρνητικών επιπτώσεων στο περιβάλλον, τη δημόσια υγεία, ανέσεις κλπ, και κατεπέκταση της συγκριτικής αξιολόγησης των πιθανών αυτών θέσεων/πορειών.

• Η υποβολή εισηγήσεων για την πλέον περιβαλλοντικά αποδεκτή χωροθέτηση του έργου εντός της περιοχής μελέτης.

• Η έγκαιρη ενημέρωση των επικοινωνιών και η συλλογή των απόψεων τους σε σχέση με το έργο.

• Η εκτίμηση των επιπτώσεων στο περιβάλλον και η υποβολή προτάσεων για αποφυγή ή ελαχιστοποίηση τυχόν αρνητικών επιπτώσεων κατά την κατασκευή και διαχείριση των έργων.
Μελέτη Περιβαλλοντικών Επιπτώσεων από τη νέα Γραμμή Μεταφοράς Ηλεκτρισμού «Βασιλικό-Μονή»

Σε ότι αφορά το έργο θα εξεταστούν, μεταξύ άλλων, τα ακόλουθα:

- Οι απόψεις και οι αντιδράσεις των αρμόδιων φορέων και οργανωμένων συνόλων.
- Η επίδραση στην ποιότητα της ζωής κατά την κατασκευή και τη μετέπειτα λειτουργία της γραμμής μεταφοράς και οι επιπτώσεις στις δραστηριότητες των κατοίκων.
- Το χερσαίο οικοσύστημα και η εκτίμηση των επιπτώσεων σε αυτό από την απάλειψη οικοσυστημάτων και από τις κατασκευαστικές δραστηριότητες.

Συνοπτικά, η Μελέτη Εκτίμησης Επιπτώσεων στο Περιβάλλον έχει τους παρακάτω στόχους:

- Τον εντοπισμό των αναμενόμενων από το έργο θετικών και αρνητικών επιπτώσεων στο φυσικό και ανθρωπογενές περιβάλλον, στη δημόσια υγεία και στην ευημερία των κατοίκων και των χρηστών της ευρύτερης περιοχής μελέτης.
- Την τεκμηριωμένη υπόδειξη της βέλτιστης περιβαλλοντικής λύσης όπου υπάρχει δυνατότητα διαφοροποίησης του αρχικού σχεδιασμού.
- Την εκτίμηση του μεγέθους των παραπάνω πιθανών επιπτώσεων και του βαθμού επηρεασμού του περιβάλλοντος.
- Τη συγκριτική αξιολόγηση εναλλακτικών λύσεων, περιλαμβανομένης και της μη υλοποίησης του έργου και την υποβολή εισήγησης της πλέον περιβαλλοντικά αποδεκτής λύσης.
- Την υπόδειξη των αρνητικών επιπτώσεων που θα προκύψουν κατά τη διάρκεια της κατασκευής και λειτουργίας του έργου, οι οποίες θα μπορούν να αποφευχθούν, να ελαχιστοποιηθούν ή να αποκατασταθούν. Στην περίπτωση αυτή θα γίνει εισήγηση μέτρων ελαχιστοποίησης που αφορούν στη διαφοροποίηση του έργου, μέτρων προστασίας και διατήρησης του περιβάλλοντος και μέτρων αποκατάστασης.
- Την υπόδειξη των αρνητικών επιπτώσεων, οι οποίες δεν θα μπορούν να αποφευχθούν ή να ελαχιστοποιηθούν και οι οποίες θα παραμείνουν σοβαρές ακόμη και με τη λήψη των προτεινόμενων επανορθωτικών μέτρων.
- Τη σύνταξη προγράμματος διαχείρισης του έργου και παρακολούθησης του περιβάλλοντος.
3 ΘΕΣΜΙΚΟ ΠΛΑΙΣΙΟ

3.1 Εισαγωγή

Η παρούσα μελέτη περιβαλλοντικών επιπτώσεων αναφέρεται στην κατασκευή γραμμής μεταφοράς ηλεκτρισμού (αναβάθμιση υφιστάμενης γραμμής στην ίδια ακριβώς πορεία) από την περιοχή Βασιλικού μέχρι την περιοχή Μονή.

Η σύνταξη της μελέτης έγινε σύμφωνα με την ισχύουσα Κυπριακή και Ευρωπαϊκή Νομοθεσία και η οποία αναφέρεται πιο κάτω.

3.2 Νομικό Πλαίσιο

1. Ν. 106(I)/2002 Ο περί Ελέγχου της Ρύπανσης των Νερών και των Εδαφών Νόμος του 2002 (Ν.106 (I)/2002) προνοεί για την εξάλειψη ή μείωση και τον έλεγχο της ρύπανσης των νερών και του εδάφους για την καλύτερη προστασία των φυσικών υδατικών πόρων, της υγείας και ευημερίας του πληθυσμού και του περιβάλλοντος (πανίδα και της χλωρίδα).

2. Ν. 106(I)/2005 Ο περί Ελέγχου της Ρύπανσης των Νερών (τροποποιητικός) Νόμος του 2005 αφορά τη θέσπιση λεπτομερών διαδικασιών για την ενημέρωση και τις διαβουλεύσεις με το κοινό. Σε αυτό το πλαίσιο το κοινό έχει τη δυνατότητα να υποβάλει τις απόψεις του οι οποίες λαμβάνονται υπόψη στις τελικές αποφάσεις.

3. Κ.Δ.Π. 772/2003 Οι περί Ελέγχου της Ρύπανσης των Νερών (Απόρριψη Αστικών Λυμάτων) Κανονισμοί (Κ.Δ.Π. 772/2003) επιβάλλουν την ελεγχόμενη απόρριψη αστικών λυμάτων όστε να μειώνονται στο ελάχιστο οι επιπτώσεις από την απόρριψή τους στο νερό ή το έδαφος.

5. Ο Περί Εκτίμησης Των Επιπτώσεων Στο Περιβάλλον Από Ορισμένα Έργα Νόμος Αρ.140(1)/2005 της Κυπριακής Δημοκρατίας.
6. Ο Περί Εκτίμησης Των Επιπτώσεων Στο Περιβάλλον Από Ορισμένα Έργα Νόμος Αρ. 57(I)/2001 της Κυπριακής Δημοκρατίας.
7. Γενικές Οδηγίες Για Την Ετοιμασία Μελέτης Εκτίμησης Επιπτώσεων Στο Περιβάλλον (ΜΕΕΠ) Από Διάφορα Έργα της Υπηρεσίας Περιβάλλοντος του Υπουργείου Γεωργίας, Φυσικών Πόρων Και Περιβάλλοντος.
8. Ο Περί της Ποιότητας του Ατμοσφαιρικού Αέρα Νόμος Κ.Δ.Π 574/2002 της Κυπριακής Δημοκρατίας.
10. Κ.Δ.Π. 513-2002-Περί Ελέγχου της Ρύπανσης των Νερών.
11. Ν.153(I)-2003 Για την προστασία και Διαχείριση της Φύσης και της Άγριας ζωής.
13. Ν. 152(I)-2003-Για την προστασία και Διαχείριση Άγριων Πτηνών και Θηραμάτων.
16. 31(I)-2006-Περί αξιολόγησης και Διαχείρισης του Περιβαλλοντικού Θορύβου (Τροποποιητικός) Νόμος.
4 ΜΕΘΟΔΟΛΟΓΙΑ
Η παρούσα μελέτη έχει συνταχθεί σύμφωνα με τον Περί Εκτίμησης των Επιπτώσεων στο Περιβάλλον από Ορισμένα Έργα Νόμο 140(I)/2005. Ακολούθησε επίσης τις κατάλληλες τεχνικές μεθόδους, πρότυπα και καλές πρακτικές για την κάθε επιμέρους εργασία.

4.1 Συλλογή Στοιχείων
Για τη σύνταξη της έκθεσης έχουν συλλεχθεί τα πιο κάτω στοιχεία:
- Χωροταξικά, τοπογραφικά, κτηματολογικά σχέδια.
- Γεωλογικοί χάρτες, γεωλογικά και υδρολογικά στοιχεία.
- Γεωργικές Στατιστικές: 2000 Στατιστική Υπηρεσία.
- Χάρτες Πολεοδομικών Ζωνών: Τμήμα Κτηματολογίου και Χωρομετρίας.
- Δορυφορικές εικόνες-Google satellite images.
- Οδικοί χάρτες .
- Στοιχεία οικολογικών παραμέτρων, χάρτες προστατευμένων περιοχών, βάση δεδομένων BioCyprus: Ταμείο Θήρας, Τμήμα Δασών, Υπηρεσία Περιβάλλοντος.
- Σχέδια και μελέτες του προτεινόμενου έργου.

4.2 Μελέτες πεδίου
Οι μελετητές έχουν εκπονήσει τις παρακάτω μελέτες πεδίου:
- Μελέτη χλωρίδας και ορνιθοπανίδας.
- Καταγραφή απόγειων από τις επηρεαζόμενες κοινότητες.
- Αξιολόγηση και περιγραφή του τοπίου.
- Αξιολόγηση της κατάστασης του τοπικού οδικού δικτύου.
• Επισκόπηση της περιοχής για τη διαμόρφωση εισηγήσεων που αφορούν στη διαχείριση των εργοταξίων κατά τη διάρκεια των έργων αποκατάστασης.
• Εντοπισμός πηγών ατμοσφαιρικής ρύπανσης και θορύβου.
• Εντοπισμός περιβαλλοντικά ευαίσθητων περιοχών και χρήσεων γης.

4.3 Αξιολόγηση περιβάλλοντος και εκτίμηση επιπτώσεων
Πιο κάτω παρατίθεται η συνοπτική περιγραφή της μεθοδολογίας εκπόνησης της μελέτης.
Πλήρης περιγραφή των μεθόδων αξιολόγησης του περιβάλλοντος και εκτίμησης των επιπτώσεων στο περιβάλλον περιγράφονται με λεπτομέρεια στα σχετικά τμήματα της Μελέτης.

Η αξιολόγηση του περιβάλλοντος καθώς και η εκτίμηση των επιπτώσεων από το έργο ακολουθεί την πιο κάτω μεθοδολογία:

1. Προσδιορισμός της υφιστάμενης κατάστασης και της βασικής κατάστασης του περιβάλλοντος στην ευρύτερη περιοχή των έργων.
2. Καθορισμός ελάχιστων /βέλτιστων κριτηρίων ποιότητας του περιβάλλοντος.
3. Εκτίμηση της διαφοροποίησης του περιβάλλοντος που προκύπτει από το έργο σε σχέση με τα κριτήρια.
4. Μέτρα αποκατάστασης και διατήρησης ούτως ώστε να διασφαλιστεί η απαιτούμενη ποιότητα του περιβάλλοντος.

Η εκτίμηση επιπτώσεων στην ατμόσφαιρα, το έδαφος και τα νερά καθώς και η εκτίμηση των επιπτώσεων από τη δημιουργία θορύβου και ηλεκτρομαγνητικών πεδίων βασίζονται στην εφαρμογή ευρέως εφαρμοσμένων μεθόδων και πρακτικών, καθώς και στη χρήση μοντέλων όπου κρίνεται σκόπιμο.

Ο κίνδυνος ρύπανσης στο έδαφος και τα νερά προκύπτει κυρίως από την διάβρωση / ιζηματοποίηση και τη διαφυγή υλικών κατά την περίοδο κατασκευής. Η εκτίμηση των
επιπτώσεων έχει τη μορφή εκτίμησης της επικινδυνότητας και βασίζεται στον εντοπισμό ευαίσθητων περιοχών.

Η καταγραφή των οικολογικών χαρακτηριστικών της υπό μελέτη περιοχής, έγινε κατά τη διάρκεια επισκέψεων στο χώρο μελέτης την περίοδο Μάιο και Ιούνιο 2010. Η περίοδος και η φύση της καταγραφής καθορίστηκε με βάση το χαρακτήρα και τα χρονικά περιθώρια της μελέτης και δεν κρίνεται ικανοποιητική για μια πλήρη καταγραφή και αξιολόγηση των οικολογικών παραμέτρων της περιοχής αφού ολοκληρωμένη αξιολόγηση τέτοιων χαρακτηριστικών πρέπει να βασίζεται σε στοιχεία που αφορούν όλες τις περιόδους του έτους και ιδιαίτερα τον Μάρτιο - Απρίλιο, που είναι και η περίοδος ανθοφορίας (και κατά συνέπεια προσδιορισμού) των περισσότερων ειδών χλωρίδας. Τα κενά που αναπόφευκτα δημιουργήθηκαν από την περιορισμένη χρονική περίοδο καταγραφής των οικολογικών χαρακτηριστικών, έγινε προσπάθεια να καλυφθούν μέσα από βιβλιογραφική ανασκόπηση για εντοπισμό στοιχείων που αφορούν το βιολογικό περιβάλλον της κάθε περιοχής. Επίσης, χρησιμοποιήθηκαν στοιχεία από προηγούμενες περιβαλλοντικές μελέτες που διεξήχθηκαν εκ μέρους της Αρχής Ηλεκτρισμού για παρόμοια έργα.

Έχοντας υπόψη τη μορφή του έργου, ως σκοπός της μελέτης ορίζεται ο προσδιορισμός των φυσικών τύπων οικοτόπων της ευρύτερης περιοχής μελέτης και ο εντοπισμός των κύριων ειδών χλωρίδας. Για το σκοπό αυτό κρίνεται ότι η μέθοδος που ακολουθήθηκε είναι ικανοποιητική.

4.4 Εκτίμηση ηλεκτρομαγνητικών πεδίων
Τα ηλεκτρικά και τα μαγνητικά πεδία των γραμμών ηλεκτρικής ενέργειας των υποσταθμών και των γραμμών μεταφοράς ηλεκτρισμού αποτελούν περιβαλλοντικούς παράγοντες που θα πρέπει να μελετηθούν.
4.5 Εισήγηση μέτρων ελαχιστοποίησης των επιπτώσεων και διαμόρφωση προγράμματος παρακολούθησης

Τα μέτρα που προτείνονται στοιχείων στη μείωση /αποφυγή των επιπτώσεων που έχουν εντοπιστεί και στη διασφάλιση της διατήρησης της καλής κατάστασης του περιβάλλοντος. Η καλή κατάσταση του περιβάλλοντος προϋπόθετει τη συμμόρφωση με την νομοθεσία και τα λουπά κριτήρια που θα τεθούν από τη μελέτη και που αφορούν στην ποιότητα του περιβάλλοντος και τη διατήρηση προστατευμένων/ευαίσθητων περιοχών και σημαντικών στοιχείων των περιοχών μελέτης.

Το πρόγραμμα παρακολούθησης προνοεί την παρακολούθηση των στοιχείων και των παραμέτρων του περιβάλλοντος που θα θεωρηθούν σημαντικά για την κάθε περιοχή μελέτης. Το πρόγραμμα περιγράφει τις παραμέτρους που θα παρακολουθούνται και τις μεθόδους, συχνότητα και θέσεις μέτρησης /δειγματοληψίας. Επιπρόσθετα, περιγράφει τα απαιτούμενα προσόντα των υπευθύνων πλέγματος του προγράμματος καθώς και τις διαδικασίες καταγραφής και αξιολόγησης των αποτελεσμάτων.

4.6 Πολυκριτηριακή ανάλυση

Με βάση τα στοιχεία που έχουν συλλεχθεί από τις προαναφερόμενες πηγές, την καταγραφή και την αξιολόγησή τους, ακολουθεί η περιβαλλοντική αξιολόγηση τους. Η αξιολόγηση βασίζεται σε πολυκριτηριακή ανάλυση σε μορφή πλέγματος.

Η ανάλυση σε μορφή πλέγματος επιτρέπει την ποσοτικοποίηση της αξιολόγησης της περιοχής μελέτης και της βαθμολόγησής της σύμφωνα με μια κλίμακα αυξητικής βαρύτητας ανάλογα με το εξεταζόμενο κριτήριο. Επειδή το υπό μελέτη έργο είναι γραμμικό, καταλαμβάνει μεγάλη έκταση η οποία χαρακτηρίζεται από μεγάλες διαφοροποιήσεις όσον αφορά στα χαρακτηριστικά και ευαισθησία του περιβάλλοντος. Όπου κρίνεται σκόπιμο η περιοχή μελέτης χωρίζεται σε υπο-περιοχές και η περιβαλλοντική αξιολόγηση γίνεται για κάθε υπο-περιοχή χωριστά.
Στην πολυκριτηριακή ανάλυση εξετάζονται κατ’ ελάχιστο τα κάτωθι κριτήρια:
- Οικολογική αξία και ευαισθησία
- Αμεσότητα με / επιπτώσεις σε οικιστικές ή άλλες ζώνες ανάπτυξης
- Απόψεις / αντιδράσεις επηρεαζόμενων
- Γεωλογία / γεωμορφολογία
- Επιπτώσεις από χωματουργικά έργα και την παραγωγή / απόθεση μπάζων
- Τοπίο και αισθητική

Η συνολική ποσοτικοποίηση των επιπτώσεων σε κάθε υπό εξέταση θεματικό τομέα, δίνει την εικόνα του μεγέθους των επιπτώσεων της υπό εξέταση περιοχής. Ανάλογα με το μέγεθος και σημασία της κάθε επίπτωσης προτάθηκαν μέτρα αντιμετώπισης/ελαχιστοποίησης των επιπτώσεων. Στη συνέχεια, οι πίνακες αναδιαμορφώθηκαν για να δείξουν το μέγεθος των επιπτώσεων που παραμένουν μετά τη λήψη μέτρων.
5 ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΡΓΟΥ

5.1 Εισαγωγικά

Η νέα γραμμή μεταφοράς θα είναι κατασκευής 132 kV διπλού κυκλώματος σε πυλώνες με αγωγούς RUBUS 486mm² μήκους περίπου 10.73 km. Η νέα γραμμή θα ξεκινά από τον Υποσταθμό ‘Βασιλικό’ και θα καταλήγει στον Υποσταθμό Μεταφοράς ‘Μονής’. Η όδεση της γραμμής παρουσιάζεται στο Παράρτημα 1, Χάρτης 01-Δοικητικά Όρια.

Η γραμμή θα κατασκευαστεί από την Αρχή Ηλεκτρισμού Κύπρου (ΑΗΚ). Σύμφωνα με τους αρμόδιους λειτουργούς της ΑΗΚ, το έργο αναμένεται να συμπληρωθεί εντός εννέα μηνών από την έναρξη κατασκευής.

5.2 Γραμμή μεταφοράς

Για την συνολική διαδρομή της νέας γραμμής θα χρησιμοποιηθούν 34 πυλώνες των οποίων η θέση τους υποδεικνύεται στους Χάρτες 13 στο Παράρτημα 1. Διευκρινίζεται ότι η χωροθέτηση των νέων πυλώνων θα γίνει ακριβώς στην ίδια θέση και πορεία με την υφιστάμενη γραμμή μεταφοράς.

5.3 Όρια Περιοχής Μελέτης

Η ευρύτερη περιοχή μελέτης περιλαμβάνει όλες τις κοινότητες τις οποίες θα διασχίζει η εναέρια γραμμή μεταφοράς ηλεκτρισμού. Από τον υποσταθμό μεταφοράς ‘Βασιλικού’ (Εικόνα 1) μέχρι τον υποσταθμό μεταφοράς ‘Μονής’ (Εικόνα 2) βρίσκονται οι κοινότητες Μαρί, Πεντάκωμο, Μοναγρούλλι, Μονή και Πύργος.
Η άμεση περιοχή μελέτης, η οποία αφορά στη μελέτη επιπτώσεων τοπικού χαρακτήρα, ορίζεται σε ένα διάδρομο πλάτους 300 μέτρων ένθεν και ένθεν της προτεινόμενης γραμμής.

Εικόνα 1: Χώρος Ηλεκτροπαραγωγικού σταθμού Βασιλικού και εκκίνησης της νέας γραμμής μεταφοράς

Εικόνα 2: Ηλεκτροπαραγωγικού σταθμού Μονής και κατάληξης της νέας γραμμής μεταφοράς
5.4 Τεχνικά Χαρακτηριστικά του Προτεινόμενου Έργου

Οι κατασκευαστικές εργασίες που περιλαμβάνει το παρόν έργο είναι οι εξής:

1. Διάνοιξη πρόσβασης προς τον χώρο ανέγερσης των πυλώνων
2. Εργασίες θεμελίωσης της βάσης των πυλώνων στις θέσεις εγκατάστασής τους
3. Σπάσιμο των υφιστάμενων βάσεων των πυλώνων 15cm πάνω από την επιφάνεια του εδάφους και μέχρι 60cm κάτω από την επιφάνεια του εδάφους και καλύψει του χώρου με χώμα.
4. Συναρμολόγηση των νέων πυλώνων
5. Ανάρτηση των καλωδίων στους νέους πυλώνες.

Η πρακτική που ακολουθείται από τον ανάδοχο εργολάβο του έργου είναι η εγκατάσταση εργοταξίων κατά μήκος της γραμμής μεταφοράς που θα κατασκευαστεί, στα οποία εργοτάξια αποθηκεύονται τα υλικά που θα χρησιμοποιηθούν για την κατασκευή (άμμος, χαλίκια, τσιμέντο, καλώδια, δικτυώματα πυλώνων, υλικά αναρτήσεως των καλωδίων στους πυλώνες κτλ.).

Το δικαίωμα διάβασης είναι περίπου 12-20 m εκατέρωθεν της γραμμής, περιοχή στην οποία απαγορεύεται η οικιστική ανάπτυξη ενώ οποιαδήποτε άλλη χρήση γης για γεωργική και κτηνοτροφική χρήση επιτρέπεται. Σύμφωνα με στοιχεία της ΑΗΚ ο χρόνος ζωής των στοιχείων του έργου έχει υπολογιστεί στα 40-45 χρόνια.

Σημειώνεται ότι κατά την διάρκεια της κατασκευής του έργου θα απαιτηθεί η διάνοιξη προσβάσεων προς τις θέσεις μικρού αριθμού πυλώνων, που θα επιτρέπουν την εύκολη προσπέλαση των συνεργείων κατασκευής στις θέσεις εγκατάστασης των πυλώνων.

5.4.1 Εργατικό προσωπικό κατασκευαστικών εργασιών

Κατά την διάρκεια των κατασκευαστικών εργασιών απαιτείται η εργοδότηση 20 εργαζομένων ανά συνεργείο για την εκτέλεση όλων των απαιτούμενων εργασιών.
Για την κάλυψη των αναγκών του εν λόγω προσωπικού είναι απαραίτητη η ανέγερση προσωρινών εγκαταστάσεων που πιθανόν να περιλαμβάνουν:

1. Φορητές χημικές τουαλέτες
2. Εγκαταστάσεις προσωρινής αποθήκευσης χημικών ουσιών (π.χ. αποθήκευση μηχανημάτων)
3. Ηλεκτρικές γεννήτριες
4. Παροχή νερού.

5.4.2 Εξοπλισμός κατασκευής
Οι ανάγκες σε εξοπλισμό (είδος και δυναμικότητα μηχανημάτων) καθώς επίσης και η εκτίμηση του χρόνου λειτουργίας για κάθε ένα από τα κύρια μηχανήματα που πρόκειται να χρησιμοποιηθούν στην κατασκευή της νέας γραμμής μεταφοράς δίνονται στον Πίνακα 3.

Πίνακας 3: Κατάλογος χρησιμοποιημένου εξοπλισμού

<table>
<thead>
<tr>
<th>Μηχάνημα</th>
<th>Μέγεθος (KW)</th>
<th>Ωρες λειτουργίας (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φορτωτήρας</td>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td>Εκσκαφέας</td>
<td>186</td>
<td>45</td>
</tr>
<tr>
<td>Προωθητήρας γαιών</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>Φορτηγό</td>
<td>200</td>
<td>90</td>
</tr>
<tr>
<td>Αντλία σκυροδέματος</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>Βαρέλα</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Γερανός</td>
<td>200</td>
<td>370</td>
</tr>
</tbody>
</table>

5.4.3 Εκσκαφές
Από της εκσκαφές που θα πραγματοποιηθούν για την θεμελίωση των πυλών που δημιουργούνται μπάζα. Για κάθε πυλώνα θα είναι αναγκαία η εκσκαφή 60 m³ χώματος (15 m³ για κάθε πόδι του πυλώνα). Τα 13 m³ περίπου θα επαναχρησιμοποιηθούν για την επιχωμάτωση του κάθε ποδιού, με αποτέλεσμα να υπάρχει περίσσευμα μόνο 2 m³ από το καθένα και σύνολο 8 m³ από κάθε πυλώνα.
Επίσης επειδή οι προηγούμενες πυλώνες πρόκειται να απομακρυνθούν από τον χώρο θα υπάρχει επιπλέον εκσκαφές για την απομάκρυνση των θεμελίων αυτών.
Μελέτη Περιβαλλοντικών Επιπτώσεων από τη νέα Γραμμή Μεταφοράς Ηλεκτρισμού «Βασιλικό-Μονή»

Από τα θεμέλια των υφιστάμενων πυλώνων εμβαδόν 0,60m επί 0,60m και σε βάθος 0,60m κάτω από την επιφάνεια του εδάφους και άλλα 0,15m πάνω από το έδαφος θα αφαιρεθούν. Συνολικά θα έχουμε 10,80m³ μπάζα από μπετόν ανά πυλώνα.

Στην πιο κάτω εικόνα (Εικόνα 3) παρουσιάζεται ο τύπος του πυλώνα που θα χρησιμοποιηθεί για την κατασκευή του έργου.

Εικόνα 3: Παράδειγμα τυπικού πυλώνα ΑΗΚ

Θα καταβληθούν προσπάθειες ώστε το μέγιστο δυνατό ποσοστό των ποσοτήτων μπαζών που θα προκύψουν από τις εκσκαφές να αξιοποιηθεί για τις επιχωματώσεις του περιβάλλοντος χώρου. Οποιαδήποτε περίσσεια ποσότητα θα τοποθετηθεί σε εγκεκριμένους χώρους που θα υποδειχθούν από τις Κοινοτικές Αρχές Αρχές Μαρί, Πεντάκωμου, Μοναγρούλλι, Μονής και Πύργου.
5.4.4 Ενέργεια

Κατά την διάρκεια εκπόνησης του έργου η εκτίμηση της κατανάλωσης καυσίμων (diesel), έγινε με βάση την εκτίμηση των αναγκών σε εξοπλισμό, όπως παρουσιάστηκε στον Πίνακα 3, την ειδική κατανάλωση καυσίμου ανά μηχάνημα όπως παρουσιάζεται στον Πίνακα 4 και λαμβάνοντας υπόψη 8-ωρο οράμα εργασίας ανά ημέρα.

Πίνακας 4: Κατανάλωση καυσίμου κατά το στάδιο των έργων κατασκευής (lt)

<table>
<thead>
<tr>
<th>Μηχάνημα</th>
<th>Ωρες λειτουργίας (hr)</th>
<th>Ειδική κατανάλωση (lt/hr)</th>
<th>Συνολική κατανάλωση (lt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φορτωτήρας</td>
<td>40</td>
<td>25</td>
<td>1,000</td>
</tr>
<tr>
<td>Εκκαυφαές</td>
<td>45</td>
<td>30</td>
<td>1,500</td>
</tr>
<tr>
<td>Προσωπικής γαιών</td>
<td>20</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>Φορτηγό</td>
<td>90</td>
<td>20</td>
<td>1,800</td>
</tr>
<tr>
<td>Αντλία σκυροδέματος</td>
<td>20</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>Βαρέλι</td>
<td>20</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>Γερανός</td>
<td>370</td>
<td>30</td>
<td>11,000</td>
</tr>
</tbody>
</table>

Συνολική κατανάλωση: 16,500 lt

5.4.5 Υγεία και ασφάλεια

Κατά την διάρκεια της εκτέλεσης των εργασιών για την θεμελίωση, συναρμολόγηση των πυλώνων και ανάρτηση των καλωδίων, ο ΑΗΚ ακολουθεί η συνήθης και ορθή πρακτική, και λαμβάνοντας όλα αυτά, η απαραίτητα μέτρα για την αποφυγή επικίνδυνων καταστάσεων τόσο για τον ανθρώπινο προσωπικό όσο και τους περίοικους. Μεταξύ άλλων, η ΑΗΚ προχωρεί στην κατασκευή προσωπικών καλωδίων, στις περιοχές όπου διακινούνται οχήματα, για να διασφαλίσει την απόφυγη επικίνδυνων καταστάσεων. Η ανάρτηση των καλωδίων γίνεται από τρία συνεργές, ένα κατά μήκος της γραμμής καθε μήνα και ένα κατά κάθε μήνα. Τα συνεργεία βρίσκονται σε συνεχή επαφή μέσω ασυρμάτου και σε περίπτωση κατάστασης οι εργασίες ανύψωσης διακόπτονται αμέσως.

Αναφορικά με την ασφάλεια των περίοικων έναντι ηλεκτροπληξίας, η ΑΗΚ ακολουθεί συγκεκριμένη πρακτική; ως πρώτο μέτρο προβλέπει την πυλώνα περιβάλλοντος ανά καθέ κατάλοιπο της γραμμής αυτόνομη σε υβριδική κατανάλωση από το φορτίο της γραμμής προς την κοινότητα.
μεταφοράς. Επίσης, στους πυλώνες από κάποιο ύψος και πάνω τοποθετείται συμπαγόπλεγμα, ώστε να εμποδίζεται η αναρρίχηση σε αυτούς.

5.4.6 Περιγραφή Χώρων Εργοταξίων
Κατά την κατασκευή του έργου αναμένεται να γίνει ανάπτυξη μικρών εργοταξίων στις θέσεις εγκατάστασης των πυλώνων (βλ. Χάρτη Θέσεις Πυλώνων, Παράρτημα 1, Αρ. Σχεδίου 13). Οι θέσεις έχουν οριστεί με βάση την προσβασιμότητα τους, την υψομετρική τους θέση καθώς και με την γενικότερη εξυπηρέτηση της περιοχής και του έργου.

5.4.7 Υλικά Κατασκευής
Τα είδη των υλικών που αναμένεται να χρησιμοποιηθούν είναι:
- Τσιμέντο
- Χαλίκι
- Υλικά επίχωσης (Εδάφος)
- Άσφαλτος

5.4.8 Πρόκληση Δονήσεων από τις Κατασκευαστικές Εργασίες
Δεν αναμένεται να υπάρξουν προβλήματα από δονήσεις κατά την κατασκευή του έργου. Τόσο κατά την εκσκαφή για την τοποθέτηση των πυλώνων, όσο και κατά την αφαίρεση των υφιστάμενων πυλώνων δεν αναμένεται να υπάρξουν προβλήματα από δονήσεις και δεν αναμένεται να γίνουν οποιεσδήποτε εκρήξεις.

5.5 Κατευθυντήριες Γραμμές για Ηλεκτρομαγνητικά Πεδία
Τα μαγνητικά πεδία δημιουργούνται από τη ροή ηλεκτρικού ρεύματος στους αγωγούς των γραμμών μεταφοράς και διαμόνης ηλεκτρικής ενέργειας, των υποσταθμών, των ηλεκτρικών εγκαταστάσεων, των συσκευών και των μηχανών οικιακής και βιομηχανικής χρήσης. Μαγνητικά πεδία δημιουργούνται, επίσης και από τον μαγνητισμό της Γης και από άλλα φυσικά και επομένως υπάρχουν παντού.

Διαφημιστική Συμβουλευτική Κύπρου ΛΣΔ

35
Η δημιουργία των ηλεκτρικών και μαγνητικών πεδίων από την ολοκλήρωσή και λειτουργία της προτεινόμενης γραμμής μεταφοράς, αποτελεί σημαντική παράμετρο λειτουργίας της. Ο σχεδιασμός της γραμμής λαμβάνει υπόψη τις υπολογιζόμενες τιμές των πεδιακών εντάσεων ηλεκτρικού πεδίου και μαγνητικής επαγωγής, οι οποίες κατ’ ουδένα λόγο δεν θα πρέπει να υπερβαίνουν τις επιτρεπόμενες, όπως αυτές καθορίζονται από τους Διεθνείς Οργανισμούς και την Ευρωπαϊκή Ένωση. Στους πιο κάτω πίνακες παρατίθενται οι μέγιστες αποδεκτά επίπεδα ηλεκτρικού και μαγνητικού πεδίου που έχουν τοποθετηθεί για προληπτικούς λόγους από Διεθνείς Οργανισμούς και την Παγκόσμια Οργάνωση Υγείας, ο Διεθνής Οργανισμός Προστασίας από Ακτινοβολία και η Διεθνής Επιτροπή για την Προστασία από την Ιονίζουσα Ακτινοβολία, τα οποία υιοθέτησε η Ευρωπαϊκή Ένωση. Θα πρέπει να τονίσετε ότι παρόλο που πολύ ορθά έχουν εφαρμοστεί αυτά τα επίπεδα, ο καθορισμός τους έχει τοποθετηθεί για προληπτικούς σκοπούς, αφού δεν έχει αποδειχθεί ότι συνδέονται με ανθρώπινες ασθένειες.

Πίνακας 5: Όρια έκθεσης ηλεκτρικού πεδίου για τον ανθρώπινο οργανισμό.

<table>
<thead>
<tr>
<th>Οργανισμόι</th>
<th>Μέγιστο ηλεκτρικό πεδίο (V/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRPB</td>
<td>12000</td>
</tr>
<tr>
<td>IRPA*</td>
<td>5000</td>
</tr>
<tr>
<td>IRPA**</td>
<td>10000</td>
</tr>
<tr>
<td>CENELEC</td>
<td>10000</td>
</tr>
<tr>
<td>EUROPEAN UNION (ICNIRP)*</td>
<td>5000</td>
</tr>
<tr>
<td>EUROPEAN UNION (ICNIRP)**</td>
<td>10000</td>
</tr>
</tbody>
</table>

Πίνακας 6: Όρια έκθεσης μαγνητικού πεδίου για τον ανθρώπινο οργανισμό.

<table>
<thead>
<tr>
<th>Οργανισμόι</th>
<th>Μέγιστο μαγνητικό πεδίο</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μΤ</td>
</tr>
<tr>
<td>NRPB</td>
<td>1600</td>
</tr>
<tr>
<td>WHO</td>
<td>500</td>
</tr>
<tr>
<td>IRPA*</td>
<td>100</td>
</tr>
<tr>
<td>IRPA**</td>
<td>1000</td>
</tr>
<tr>
<td>DIN VDE 1991</td>
<td>400</td>
</tr>
<tr>
<td>CENELEC</td>
<td>640</td>
</tr>
<tr>
<td>EUROPEAN UNION (ICNIRP)*</td>
<td>100</td>
</tr>
<tr>
<td>EUROPEAN UNION (ICNIRP)**</td>
<td>500</td>
</tr>
</tbody>
</table>

* για συνεχή έκθεση
** για λίγες ώρες την ημέρα
Χαρακτηριστικά μεγέθη των πεδίων που δημιουργούνται είναι η ένταση για το ηλεκτρικό πεδίο (V/m), ενώ το χαρακτηριστικό μέγεθος του μαγνητικού πεδίου είναι η μαγνητική επαγωγή με μονάδες μέτρησης το Tesla (T) ή το Gauss (G). Το ηλεκτρικό πεδίο προκαλείται από τις τάσεις των αγωγών και το μαγνητικό πεδίο δημιουργείται από τις εντάσεις των αγωγών.

Υπάρχουν πολλά ηλεκτρομαγνητικά πεδία και οι διαφορές τους είναι πολύ σημαντικές. Τα χαρακτηριστικά τους εξαρτώνται από το είδος των ηλεκτρομαγνητικών κυμάτων που δημιουργούνται. Τα κυρίοτερα χαρακτηριστικά που διαφοροποιούν την ηλεκτρομαγνητική ακτινοβολία είναι το μήκος κύματος, η συχνότητα και η ενέργεια που μεταφέρουν.

Τα ηλεκτρολογικά πεδία που δημιουργούνται από τις εγκαταστάσεις της Αρχής Ηλεκτρισμού Κύπρου σε πολύ χαμηλή συχνότητα των 50Hz δεν εκπέμπονται, σε αντίθεση με την ακτινοβολία των κεραιών όπου τα ηλεκτρομαγνητικά πεδία εκπέμπονται, αφού άλλωστε αυτός είναι ο σκοπός των κεραιών. Ως εκ τούτου παρατηρείται ραγδαία εξασθένηση των ηλεκτρομαγνητικών πεδίων που δημιουργούνται από τις εγκαταστάσεις της Αρχής Ηλεκτρισμού σε σχέση με την απόσταση.

Με βάση προηγούμενες μετρήσεις και υπολογισμούς για τις μέγιστες δυνατές τιμές των πεδιακών εντάσεων που έγιναν σε γραμμές μεταφοράς της ΑΗΚ, οι μέγιστες τιμές που προέκυψαν ήταν κατά πολύ μικρότερες των επιτρεπόμενων οριακών τιμών των κανονισμών προστασίας των ανθρώπων έναντι ηλεκτρικών και μαγνητικών πεδίων.

Οι υπολογισμοί έγιναν για την δυσμενέστερη περίπτωση, δηλαδή συνεχής παραμονή ανθρώπου εντός της ζώνης ουδεμίας κάτω από την υπό μελέτη γραμμή με την παραδοχή ταυτόχρονης λειτουργίας και των δύο κυκλωμάτων της γραμμής με την μέγιστη επιτρεπόμενη ισχύ:

a) στην θέση εξάντλησης της επιτρεπόμενης ελάχιστης απόστασης των αγωγών από το έδαφος,
β) από οποιοδήποτε αντικείμενο/σημείο στο οποίο θα μπορούσε να σταθεί άτομο (σκάλα, εξέδρα, κτλ.).

Οι υπολογισμοί της εντάσεως του ηλεκτρικού πεδίου έγιναν για την τάση λειτουργίας των 132kV. Οι υπολογισμοί του μαγνητικού πεδίου έγιναν για ένταση 660 A ανά φάση και κύκλωμα.

Οι μέγιστες τιμές των πεδιακών εντάσεων που υπολογίστηκαν εντός της ζώνης δουλείας είναι:

- Σε ύψος 1,8m (ύψος ανθρώπου) από την επιφάνεια εδάφους για απόσταση των κάτω αγωγών από το έδαφος 6,7m (ελάχιστη απόσταση λόγω τάσεως): E = 2.1kV/m < 10kV/m, B =18.7 μT < 640 μT (34 φορές μικρότερη).
- Σε ύψος 1,8m (ύψος ανθρώπου) από οποιοδήποτε αντικείμενο/σημείο όπου μπορεί να σταθεί άνθρωπος (σκάλα, εξέδρα, κτλ.) για απόσταση των κάτω αγωγών από το σημείο 3m (ελάχιστη απόσταση λόγω τάσεως): E = 7.5 kV/m < 10kV/m, B =60.3 μT << 640 μT (10.8 φορές μικρότερη).

Η λειτουργία της γραμμής δεν θα έχει καμία επίπτωση στον ανθρώπινο παράγοντα από ηλεκτρικά και μαγνητικά πεδία, καθόσον πληρούνται τα μέγιστα αποδεκτά επίπεδα ηλεκτρικού και μαγνητικού πεδίου που έχουν τεθεί για προληπτικούς λόγους από Διεθνής Οργανισμούς.

5.6 Πρόκληση Θορύβου

Ο θόρυβος από τα κατασκευαστικά έργα εκτιμήθηκε με βάση το Αγγλικό Πρότυπο BS 5228:84 "Noise Control on Construction and Open Sites". Το Πρότυπο αυτό δίνει κατευθυντήριες γραμμές για τους παράγοντες που πρέπει να ληφθούν υπόψη για να εκτιμηθούν οι επιπτώσεις θορύβου από τα κατασκευαστικά έργα. Αυτό παρουσιάζει τα επίπεδα εκπομπής θορύβου από μηχανήματα που χρησιμοποιούνται σε κατασκευαστικά έργα, εισηγείται στόχους ανωτάτων επιπέδων θορύβου μέσα στα όρια των κατασκευαστικών έργων για να υπάρξει έλεγχος των εκπομπών θορύβου. Οι εισηγήσεις
λαμβάνουν υπόψη τα υφιστάμενα επίπεδα περιβαλλοντικού θορύβου στη περιοχή, το είδος των περιοχών που πιθανόν να επηρεαστούν, τις ώρες εργασίας, τη διάρκεια των εργασιών, το είδος των μηχανημάτων και το είδος των κατασκευαστικών έργων που θα λάβουν χώρα.

Επειδή ο τύπος και ο αριθμός των μηχανημάτων που θα χρησιμοποιηθούν για το Έργο δεν μπορούν να καθοριστούν κατά τη διάρκεια της μελέτης, τα επίπεδα θορύβου υπολογίστηκαν λαμβάνοντας υπόψη τα ψηλότερα πιθανά επίπεδα θορύβου που αναφέρονται στο Πρότυπο. Τα πιο θωρυβώδη μηχανήματα που θα χρησιμοποιηθούν για την ανέγερση του Έργου αναμένονται να είναι οχήματα μεταφοράς και εκσκαφής, κομπρεσέρ και μηχανήματα που εργάζονται με αέρα, καθώς και γερανοί.

Εξετάζοντας τις χείριστες συνθήκες εκπομπής θορύβου από τη κατασκευή του Έργου, τα επίπεδα θορύβου των μηχανημάτων έχουν υπολογιστεί να είναι της τάξης των 95 dB L_{Aeq}(9 η), σε απόσταση 10 μέτρων από το κάθε μηχάνημα.

Για τη μελέτη υπολογίζεται ότι κατά τη διάρκεια μιας μέρας θα χρησιμοποιούνται μέχρι δύο τόσο θωρυβώδη μηχανήματα πλησίον δεκτών του θορύβου, με συνολική στάθμη θορύβου τα 98 dBA. Τα υπόλοιπα μηχανήματα στο εργοτάξιο θα βρίσκονται είτε πιο μακριά είτε θα είναι λιγότερο θωρυβώδη, και κατά συνέπεια η επίδρασή τους θα είναι αμελητέα.

Στον Πίνακα 7 παρουσιάζονται οι εκτιμήσεις θορύβου σύμφωνα με το αναμενόμενο μέγεθος και ένταση έργων.
Πίνακας 7: Αναμενόμενα επίπεδα θορύβου από κατασκευαστικά έργα

<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Απόσταση 40μ.</th>
<th>Απόσταση 100μ.</th>
<th>Απόσταση 300μ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{Aeq}(9\text{ hour})$ - BS 5228, συνολικός θόρυβος από τα έργα σε απόσταση 10 μ. σε dB</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Μείωση/αύξηση θορύβου λόγω απόστασης σε dB</td>
<td>-12</td>
<td>-19</td>
<td>-30</td>
</tr>
<tr>
<td>Μείωση λόγω σκίασης θορύβου από εμπόδια (πχ κτίρια) σε dB</td>
<td>0</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Αύξηση θορύβου από αντανακλάσεις στη πρόσοψη σε dB</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Τελικό επίπεδο θορύβου στη πρόσοψη σε dB</td>
<td>86</td>
<td>73</td>
<td>58</td>
</tr>
</tbody>
</table>

Πρέπει να σημειωθεί ότι, ανάλογα με τη φύση του ενοχλητικού θορύβου (κρουστικός θόρυβος, βουητό, συνεχής ή διακοπτόμενος), εφαρμόζονται αριθμητικές διορθώσεις (corrections - penalties) στο επίπεδο του εξωγενή θορύβου που έχει μετρηθεί.

Το πρότυπο BS 4142:1990 χρησιμοποιήθηκε ώστε να διορθώσει την υπολογιζόμενη στάθμη του θορύβου έτσι που να αντικατοπτρίζει με μεγαλύτερη ακρίβεια τις πιθανές επιπτώσεις στους δέκτες. Οι διορθώσεις που εφαρμόζονται και η μέθοδος εκτίμησης του θορύβου από το BS 4142 αναφέρονται πιο κάτω. Τα αποσπάσματα που παραθέτονται είναι μεταφρασμένα από το ίδιο το πρότυπο.

5.6.1 Διορθώσεις για βουητό (tonal) και κρουστικό χαρακτήρα του θορύβου.

Αν ο θόρυβος περιέχει διακρινόμενες εξεχωριστές και συνεχόμενες νότες [βουητό, βόμβο, (whine, hiss, screech, hum, etc.)], ή αν υπάρχουν κρούσεις στο θορύβο (e.g. bangs, clicks, clatters or thumps), ή αν ο θόρυβος είναι αρκετά ακανόνιστος σε χαρακτήρα ώστε να τραβά την προσοχή, προσθέτουμε 5 dB (A) στο επίπεδο του θορύβου που έχει μετρηθεί, για να προσδιοριστεί το τελικό διορθωμένο επίπεδο του ενοχλητικού θορύβου.
5.6.2 Μέθοδος εκτίμησης (Method of Assessment).
Αφαιρούμε από το τελικό διορθωμένο (επίπεδο του ενοχλητικού θορύβου) το επίπεδο του περιβαλλοντικού θορύβου. Διαφορές της τάξης των 10 ή περισσότερων dB(A), υποδεικνύουν τη δυνατότητα εκφρασής παραπόνων 10 dB (A) (level differences indicate that complaints are likely). Διαφορές της τάξης των 5 dB (A) είναι οριακής σημασίας (of marginal significance). Για διαφορές μικρότερες των 5 dB (A), η διαφορά ταχείς είναι οι πιθανότητες να εκφραστούν παράπονα. Διαφορές των -10 dB (A), δείχνουν θετικά ότι δεν πρέπει να υπάρχουν παράπονα.

5.6.3 Πρόκληση Θορύβου κατά τη Λειτουργία
Κατά τη λειτουργία του, το έργο δεν παράγει θόρυβο με εξαίρεση το φαινόμενο Corona. Παρουσιάζεται περιοδικά, κάτω από συνθήκες υψηλής υγρασίας και παρουσίας σκόνης στην ατμόσφαιρα. Ο θόρυβος τυπικά κυμαίνεται στα 50 dBA και μπορεί να φτάσει μέχρι τα 60dBA στο έδαφος κάτω από τις γραμμές.

5.7 Ποιότητα της ατμόσφαιρας
5.7.1 Κατά την Κατασκευή
Η ποιότητα της ατμόσφαιρας κατά τη διάρκεια της κατασκευής θα επηρεάζεται από τις εξής πηγές σκόνης:
• Χωματουργικές εργασίες
• Διακίνηση χημικών σε χωμάτινες επιφάνειες

Με βάση στοιχεία του Οργανισμού Προστασίας Περιβάλλοντος των Ηνωμένων Πολιτειών (EPA), ο μέσος ρυθμός δημιουργίας σκόνης από τα κατασκευαστικά έργα ανέρχεται σε 190 kg ανά μήνα ανά εκτάριο. Χρησιμοποιώντας τα στοιχεία αυτά έγινε μια προκαταρκτική εκτίμηση των μέγιστων συγκεκριμένων σκόνης που ενδέχεται να δημιουργούνται στην περιοχή του έργου. Συγκεκριμένα, θεωρείται ότι για σκοπούς υπολογισμού των εκπομπών σκόνης χωματουργικά έργα θα γίνονται μέχρι 0.25 εκτάριο
Μελέτη Περιβαλλοντικών Επιπτώσεων από τη νέα Γραμμή Μεταφοράς Ηλεκτρισμού «Βασιλικό-Μονή»

ανά πάσα στιγμή σε κάθε ενιαία περιοχή επιρροής (θέση πυλώνα), οπότε οι μέσες συνολικές εκπομπές εκτιμάται ότι θα είναι της τάξης των 47.5 kg ανά μήνα.

Στη συνέχεια έγινε εκτίμηση της διασποράς της σκόνης με βάση τους συντελεστές διασποράς που προκύπτουν από το λογισμικό ISC, μέσα από συνθήκες δραστηριότητας μέσης έντασης, ταχύτητα ανέμου 2 ms⁻¹ και ουδέτερη σταθερότητα της ατμόσφαιρας. Θεωρώντας ότι οι εκπομπές προκύπτουν από την παραδοχή οκτάωρης εργασίας, πενταημέρου εργασίας τη βδομάδα, οι εκπομπές ανάγονται σε 0.35 kg/h που αντιστοιχεί σε 0.7g/s (PM10). Επιπρόσθετα για τους σκοπούς της μελέτης έχουν επιλεγεί μετεωρολογικές συνθήκες οι οποίες προωθούν την αυξημένη συγκέντρωση και οι οποίες όμως παρουσιάζονται με ικανοποιητική συχνότητα (10%). Συνεπώς, δεν έχουν επιλεγεί οι απόλυτα χείριστες συνθήκες.

Για την ώρια κατάσταση η συγκέντρωση στο κέντρο των εργασιών, δηλαδή στο χώρο του έργου φτάνει τα 150 μg/m³ (PM10), ενώ η μέγιστη 8-ωρη τιμή φτάνει τα 40 μg/m³ (PM10).

Όπως είναι αναμενόμενο, η οχλήση σκόνης θα είναι σοβαρότερη κατά τους καλοκαιρινούς μήνες οπότε το έδαφος παρουσιάζει τη μικρότερη υγρασία. Κατά τις περιόδους των εντατικών χωματουργικών εργασιών εκτιμάται ότι θα υπάρχει αυξημένη σκόνη για απόσταση μέχρι και 150 μέτρων από το χώρο εργασιών. Σε περιόδους βροχόπτωσης ή όταν το έδαφος είναι βρεγμένο δεν υπάρχουν προβλήματα σκόνης.

5.7.2 Πρόκληση Ατμοσφαιρικής Ρύπανσης Κατά τη Λειτουργία

Το έργο δεν παράγει αέριους ρύπους οπότε και η λειτουργία του έργου δεν αναμένεται να επιβαρύνει την ατμόσφαιρα στην περιοχή μελέτης.
5.8 Δημιουργία Αποβλήτων (Στερεά, Υγρά, Επικίνδυνα)

5.8.1 Απόβλητα Εκσκαφών και Υλικών κατά την Κατασκευή

Στο προτεινόμενο έργο όλα τα υλικά εκσκαφής προβλέπεται ότι θα χρησιμοποιηθούν επιτόπου στο μεγαλύτερο μέρος τους. Κάποια περίσσια υλικά όμως θα προέρχονται από κατασκευαστικά υλικά και υλικά συσκευασίας. Μία εκτίμηση για την ποσοστιαία σύσταση των αποβλήτων εκσκαφών, κατασκευών και κατεδαφίσεων (ΑΕκΚ) σύμφωνα με τα αποτελέσματα του προγράμματος LIFE με τίτλο «Αειφόρος Κατασκευή στο Δημόσιο και Ιδιωτικό Τομέα μέσω της Ολοκληρωμένης Πολιτικής Προϊόντων» παρουσιάζεται στον πιο κάτω Πίνακα 8.

Πίνακας 8: Σύσταση των παραγόμενων ΑΕκΚ

<table>
<thead>
<tr>
<th>Υλικό</th>
<th>Συμμετοχή (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Χαρτί</td>
<td>9</td>
</tr>
<tr>
<td>Πλαστικό</td>
<td>2</td>
</tr>
<tr>
<td>Μέταλλα</td>
<td>5</td>
</tr>
<tr>
<td>Ξύλο</td>
<td>14</td>
</tr>
<tr>
<td>Οικοδομικά υλικά (σκυρόδεμα, τούβλα κ.α.)</td>
<td>65</td>
</tr>
<tr>
<td>Λοιπά υλικά</td>
<td>5</td>
</tr>
</tbody>
</table>

Τα μπάζα δεν πρέπει να απορρίπτονται σε παρακείμενα τεμάχια ή σε κοίτες ρυακιών, αλλά θα πρέπει να ακολουθούν ειδικές πρόνοιες απομάκρυνσης και απόθεσης τους σε προεπιλεγμένους χώρους. Σχετικές πρόνοιες πρέπει να αναφέρονται στους Όρους Εντολής του Εργολάβου που θα αναλάβει την κατασκευή του Έργου. Ο Πίνακας 9 παρουσιάζει τις ενδεδειγμένες μεθόδους διαχείρισης. Όποτε προκύπτει ανάγκη μετακίνησης τα υλικά θα τοποθετούνται σε φορτηγά (συνήθως είκοσι κυβικά μέτρα 20 m³) και θα σκεπάζονται για να αποφεύγει ο διασκορπισμός τους.
Πίνακας 9: Είδη Αποβλήτων κατασκευών και μέθοδος διάθεσης

<table>
<thead>
<tr>
<th>Είδη Παραγόμενων Υλικών</th>
<th>Μέθοδος Διάθεσης</th>
<th>Τόπος Διάθεσης-Επεξεργασίας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τούβλα</td>
<td>Ταφή</td>
<td>Αδειοδοτημένοι σκυβαλότοποι, Χώροι Υγειονομικής Ταφής Αδρανών Αποβλήτων (ΧΥΤΑΑ)</td>
</tr>
<tr>
<td>Σκουρόδεμα</td>
<td>Ταφή</td>
<td>Αδειοδοτημένοι σκυβαλότοποι, Χώροι Υγειονομικής Ταφής Αδρανών Αποβλήτων (ΧΥΤΑΑ)</td>
</tr>
<tr>
<td>Ξύλο</td>
<td>Επαναφόρτωση</td>
<td>Ξυλουργεία, οικοδομικές εργασίες</td>
</tr>
<tr>
<td>Μέταλλα</td>
<td>Ανακύκλωση</td>
<td>Αδειοδοτημένοι συλλέκτες - ανακυκλωτές</td>
</tr>
<tr>
<td>Πλαστικό</td>
<td>Ανακύκλωση, ανάκτηση ενέργειας</td>
<td>Αδειοδοτημένοι συλλέκτες - ανακυκλωτές</td>
</tr>
</tbody>
</table>

| Υλικά συσκευασιών | Αδειοδοτημένα συστήματα (π.χ. Green Dot) |

5.8.1.1 Στερεά απόβλητα αστικού τύπου

Τα στερεά απόβλητα αστικού τύπου τα οποία προκύπτουν από το προσωπικό του εργοτάξιου αφορούν σε μικρές μέχρι αμελητέες ποσότητες και θα τυγχάνουν της ίδιας διαχείρισης με τα υπόλοιπα στερεά απόβλητα με ευθύνη του εργολάβου. Αυτά θα συλλέγονται και καθημερινά και θα απορρίπτονται σε δανειοδοτημένους χώρους διαχείρισης αποβλήτων.

Μία πρώτη εκτίμηση του όγκου των οικιακών απορριμμάτων που θα παραχθούν κατά την φάση κατασκευής των έργων μπορεί να γίνει με βάση τις παρακάτω παραδοχές:

- η μέση τιμή απορριμμάτων στον εργασιακό χώρο είναι 0,75 κιλά/ ημέρα/ άτομο,
- ο εκτιμώμενος μέσος αριθμός εργαζομένων/ ημέρα ανέρχεται στους 20.

Με βάση τα παραπάνω, η συνολική παραγωγή απορριμμάτων εκτιμάται σε 15 κιλά/ ημέρα.

5.8.1.2 Υγρά απόβλητα

Κατά την κατασκευή του έργου τα υγρά, μη επικίνδυνα απόβλητα που θα παράγονται θα είναι αστικού τύπου λόγωτα. Αυτά θα συλλέγονται και θα απορρίπτονται εκτός της περιοχής μελέτης σύμφωνα με κατάλληλες πρακτικές και υπό την επίβλεψη του εργολάβου.
5.8.1.3 Επικίνδυνα απόβλητα

Στα επικίνδυνα στερεά απόβλητα περιλαμβάνονται οι κενοί περιέκτες καυσίμων, πετρελαιοειδών, λιπαντικών, διαλυτών και άλλων επικίνδυνων χημικών ουσιών, καθώς και εναπομείναντα τέτοια υλικά τα οποία δεν είναι χρησιμοποιήσιμα. Τα υλικά αυτά θα πρέπει να συλλέγονται από εγκεκριμένους υπεργολάβους και να τυγχάνουν της κατάλληλης διαχείρισης, όπου διαχείριση σημαίνει συλλογή, συσκευασία, σήμανση, μεταφορά, προσωρινή αποθήκευση και τελική διάθεση. Οι κατάλληλες διαδικασίες για την κάθε φάση διαχείρισης προβλέπονται στη νομοθεσία και στις διεθνείς συμβάσεις και κανονισμούς. Απόβλητα τέτοιου είδους δεν αναμένεται να υπάρξουν στις περιοχές των εργοταξίων λόγω της περιορισμένης έκτασης των κατασκευαστικών εργασιών, σε χρόνο και έκταση, που απαιτούνται για κάθε πυλώνα του έργου.

5.8.1.4 Υλικά Κατασκευής

Τα υλικά περιλαμβάνουν κυρίως τον ηλεκτρομηχανολογικό εξοπλισμό ενώ μικρές ποσότητες μπετόν θα απαιτηθεί για τις θεμελιώσεις. Τα υλικά θα προέλθουν κυρίως από βιομηχανίες έκτος της περιοχής. Επιπρόσθετα ενδεχομένως να απαιτηθούν μικρές ποσότητες υλικών επίχωσης στους δρόμους που θα διανοιχτούν ως μέρος του έργου.

5.8.2 Απόβλητα κατά τη Λειτουργία

Η λειτουργία του έργου δεν θα επιβαρύνει την περιοχή μελέτης με απόβλητα.

5.9 Διακίνηση Οχημάτων και Μηχανημάτων

5.9.1 Κατά την κατασκευή

Κατά την κατασκευή του έργου αναμένεται η μετακίνηση οχημάτων και μηχανημάτων στις περιοχές εγκατάστασης των πυλών. Η μετακίνηση των οχημάτων και των μηχανημάτων αναμένεται να γίνει ως επί το πλείστον από το υφιστάμενο δίκτυο δρόμων. Μέρος του δικτύου είναι ασφαλτοστρωμένο ενώ ένα σημαντικό μέρος του δρόμου πρόσβασης αποτελείται από χωμάτινους δρόμους. Στο σημείο αυτό να αναφερθεί ότι τα οχήματα σε μερικές περιπτώσεις αναμένεται να διακινηθούν σε δρόμους οι οποίοι θα
διανοιχτούν ώστε να εξυπηρετηθεί η εγκατάσταση των πυλώνων. Σε μια τέτοια περίπτωση θα ζητηθεί ειδική άδεια από τους ιδιοκτήτες των τεμαχίων όπου θα περάσουν από αυτά οι προσωρινοί δρόμοι και θα αποζημιωθούν από την ΑΗΚ για τυχόν ζημιές στις ιδιοκτησίες τους.

5.9.2 Κατά την λειτουργία

Κατά τη λειτουργία η διακίνηση περιορίζεται αποκλειστικά στις περιπτώσεις συντήρησης ή επεξεργασίας των πυλώνων/καλωδίων. Ο αριθμός των μετακινήσεων αναμένεται να είναι ιδιαίτερα μικρός.

5.10 Χρονοδιάγραμμα υλοποίησης

Η Αρχή Ηλεκτρισμού Κύπρου υπολογίζει την ολοκλήρωση του έργου σε χρονικό διάστημα 9 μηνών από την ημερομηνία έναρξης των έργων.
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΤΟΥ ΥΦΙΣΤΑΜΕΝΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

5.11 Εισαγωγή
Σε αυτό το κεφάλαιο αναλύονται και περιγράφονται τα χαρακτηριστικά του περιβάλλοντος (Φυσικό, Ανθρωπογενές και Βιολογικό) που επηρεάζεται αμέσως από την εγκατάσταση της νέας γραμμής μεταφοράς ηλεκτρισμού της ΑΗΚ στην περιοχή μεταξύ των ηλεκτροπαραγωγικών σταθμών Βασιλικού-Μονής. Ο χαρακτήρας του προγραμματιζόμενου έργου θα πρέπει να συμβαδίζει με τις ανάγκες των κατοίκων και χρηστών της περιοχής, ενώ παράλληλα, απαιτείται ο σεβασμός στις περιβαλλοντικές και ανθρώπινες παραμέτρους που συνθέτουν την ευρύτερη περιοχή.

Το έργο εφαρμόζεται σε μια συνολική απόσταση 10.73 km μεταξύ των περιοχών Βασιλικού και Μονής (Παράρτημα 1, Χάρτης 02-Κτηματικός Χάρτης και Πολεοδομικές Ζώνες) στην οποία περιλαμβάνονται κυρίως γεωργικές εκτάσεις και ζώνες προστάσεως (Παράρτημα 1, Χάρτες 02α-02e-Κτηματικός Χάρτης και Πολεοδομικές Ζώνες).

Η ευρύτερη περιοχή καλύπτεται σε ικανοποιητικό βαθμό από όλα τα δίκτυα δημόσιας υποδομής, συμπεριλαμβανομένων των δημοσίων οδικών προσβάσεων, των δικτύων της Αρχής Ηλεκτρισμού, της Αρχής Τηλεπικοινωνιών και Υδρεύσης.

5.12 Φυσικό Περιβάλλον

5.12.1 Γεωλογικά Χαρακτηριστικά
Ο υπό μελέτη χώρος ανήκει στη γεωτεκτονική Ζώνη της Ιζηματογενούς Ακολουθίας του Τροόδους, που περιλαμβάνει ιζήματα ηλικίας Παλαιόκαινου έως Μέσου Μειόκαινου. Συναντώνται Αλλούβιες και Κολλούβιες αποθέσεις, ο σχηματισμός Πάχνας και οι σχηματισμοί Λευκάρων και Μονής (Παράρτημα 1, Χάρτης 03- Γεωλογικός).

Ξεκινώντας από το Βασιλικό, γεωλογικά, βρισκόμαστε νοτιοανατολικά της μάζας των πυρηνικών πετρωμάτων του οφιόλιθου του Τροόδους. Ο σχηματισμός Πάχνας (Μι-Μυ)
εναποτέθηκε κατά το Μέσο Μειόκαινο (13 εκατ. Χρόνια περίπου) και περιλαμβάνει κυρίως κρητίδες, μάργες, μαργαϊκές κρητίδες, κρητιδικές μάργες και ασβεστιτικούς ψαμμίτες.

Επικαθόμενος ασύμφωνα στο ηφαιστειακό υπόβαθρο, ο Σχηματισμός των Λευκάρων (Ku2) στην ευρύτερη περιοχή αντιπροσωπεύεται από τέσσερα στρωματογραφικά μέλη: (1) τις Κατώτερες Μάργες, (2) τις Κρητίδες με Κερατόλιθους, (3) τις Συμπαγείς Κρητίδες και (4) τις Ανώτερες Μάργες. Όλα τα μέλη χαρακτηρίζονται από μικροσποριθώματα και ειδικότερα από τρηματοφόρα.

Σχηματίζοντας τη βάση του σχηματισμού των Λευκάρων οι κατώτερες Μάργες περιλαμβάνουν μια σειρά από εναλλασσόμενες ροδόχροες-καστανόχροες και γκρίζες μάργες και λεπτοπλακώδεις κρητίδες με φακοειδείς συγκεντρώσεις κερατολίθων. Το μέλος αυτό, πάχους που δεν υπερβαίνει τα 10-15cm σχηματίζει πολύ περιορισμένες, μικρές και μεμονωμένες εμφανίσεις σε κοιλώματα της επιφάνειας των ηφαιστειακών πετρωμάτων.

Οι Κρητίδες με Κερατόλιθους είναι η πλέον εκτεταμένη και η μεγαλύτερη σε πάχος λιθοστρατιγραφική μονάδα του σχηματισμού των Λευκάρων, με μέγιστη πάχος της τάξης των 300 μέτρων περίπου. Το μέλος αυτό υπέρκειται ασύμφωνα των ηφαιστειακών πετρωμάτων και κατά τόπους των Κατώτερων Μαργών και αποτελείται από πολύ καλά στρωμένες λευκές κρητίδες εναλλασσόμενες με λεπτές στρώσεις μαργαϊκών κρητίδων, πυριτιωμένων κρητίδων και κερατολίθων. Η περιοχή μεταξύ των Πεντακώμου και Μονής, από το οποίο θα διέρχεται η πρωτεινόμενη γραμμή, δομείται κατά το ήμισυ από αυτό το τμήμα του σχηματισμού.

Οι συμπαγείς κρητίδες υπέρκεινται των Κρητίδων με Κερατόλιθους και στο κατώτερο τμήμα τους αποτελούνται από συμπαγές και παχυστρωματώδεις λευκές κρητίδες. Η επαρχία τους με τις υποκείμενες κερατολιθικές κρητίδες είναι κατά τόπους απότομη και αλλου μεταβατική. Το ανώτερο τμήμα του μέλους αυτού αποτελείται από ομαλές στρώσεις φυλλωδιών κρητίδων με ενδιαστρώσεις μαργαϊκών κρητίδων.
Νότια της κοινότητας Μονής, στις κοιτές του Αργακιού του Πύργου και στην περιοχή του Ηλεκτροπαραγωγού Σταθμού Μονής υπάρχουν σύγχρονες προσχωματικές αποθέσεις που αποτελούνται από ασύνδετα ή ελαφρά συγκολλημένα υλικά, προϊόντα μεταφοράς και απόθεσης με τη βοήθεια του επιφανειακού νερού. Τα υλικά αυτά αποτελούνται από κροκαλολατύπες και άλλες αργιλλοαμμώδεις αποθέσεις με οριζόντιες κλίσεις.

5.12.2 Τεκτονικό πλαίσιο

Τεκτονικά η ευρύτερη περιοχή μπορεί να διαιρεθεί σε δύο ζώνες: τη ζώνη των πυριγενών πετρωμάτων του Τροόδους και τη ζώνη των ιζηματογενών σχηματισμών. Στη ζώνη των πυριγενών πετρωμάτων οι διάφοροι λιθολογικοί ορίζοντες δεν έχουν διαταραχθεί σημαντικά από την αρχική σχετική τους θέση. Τα ηφαιστειακά πετρώματα έχουν επηρεασθεί από μικρής κλίμακας ρηγμάτων και θρυμματισμού, με μετακινήσεις σχεδόν παράλληλες προς τα επίπεδα των φλεβών. Κύριο δομικό χαρακτηριστικό της ζώνης αυτής είναι η διάταξη των φλεβών και άρκητων ρηγμάτων σε μία κατεύθυνση που αποκλίνει ελάχιστα προς τα ανατολικά και δυτικά από τη Β-Ν διεύθυνση. Χωρίς αμφιβολία η κύρια ρηξιγένεση εντός της ζώνης αυτής συνέβη πριν την ιζηματογένεση του σχηματισμού των Λευκάρων.

Η ζώνη των ιζηματογενών σχηματισμών χαρακτηρίζεται από τα ακόλουθα στοιχεία.

- Γενική παράταξη των στρωμάτων του σχηματισμού των Λευκάρων προς ΒΑ-ΝΔ και κλίση 10-15° προς νοτιοανατολικά.
- Ασήμαντη πτύχωση των πετρωμάτων του σχηματισμού των Λευκάρων και ελαφρά πτύχωση των στρωμάτων του σχηματισμού Πάχνας και ανάπτυξη αντικλίνων και σύγκλινων με ΑΒΑ-ΔΝΔ διεύθυνση.

5.12.3 Υπόγεια νερά

Σύμφωνα με τα στοιχεία του Τμήματος Αναπτύξεως Υδάτων, η κοίτη Γερμασόγειας είναι το υπόγειο υδάτινο σώμα που ανήκει στην περιοχή μελέτης.
5.12.4 Επιφανειακά νερά

Σύμφωνα με τα στοιχεία του Τμήματος Αναπτύξεως Υδάτων, η περιοχή μελέτης ανήκει στις περιοχές 8 και 9 (Παράρτημα 1, Χάρτης 05-Λεκάνες Απορροής). Οι λεκάνες απορροής είναι οι ακόλουθες:

- 8-9 Βασιλικός
- 9-1 Αργάκι του Πύργου

5.12.5 Σεισμικότητα

Η Κύπρος, λόγω της γεωγραφικής της θέσης αλλά και της εδαφικής μορφολογίας της βρίσκεται σε μια συνεχή σεισμική δραστηριότητα (Παράρτημα 1, Χάρτης 06-Σεισμικότητα). Η γεωγραφική της θέση την κατατάσσει από τον Ατλαντικό Ωκεανό κατά μήκος της λεκάνης της Μεσογείου και περνά μέσα από την Ελλάδα, Τουρκία, Περσία, Ινδίες και φθάνει μέχρι τον Ειρηνικό Ωκεανό. Στην ζώνη αυτή συμβαίνουν σεισμοί που αντιπροσωπεύουν το 15% της παγκόσμιας σεισμικής ενέργειας. Οι σεισμοί που γίνονται στην περιοχή της Κύπρου είναι τεκτονικοί και συσχετίζονται με το «Κυπριακό Τόξο» που είναι μια τεκτονική ζώνη που απενεργοποιεί τον Ειρηνικό Ωκεανό και καταλήγει στην περιοχή των συνόρων της Κύπρου και Τουρκίας. Στο τόξο αυτό συγκρούονται η ευρωασιατική πλάκα με την αφρικανική πλάκα προκαλώντας τεκτονικούς σεισμούς όπως αυτός που έπληξε πριν από δέκα χρόνια την περιοχή της Πάφου.

Ο σεισμικός κίνδυνος έχει άμεση σχέση και με τη γεωλογία του υπεδάφους αλλά και με τη γεωλογία του υπεδάφους με τη γεωλογία του υπεδάφους. Η Κύπρος χωρίζεται σε ένα σεισμικό κόμβο που εφαρμόζεται σε όλες τις κατασκευές. Σύμφωνα με την κατασκευή που έχει ισχύσει, η Κύπρος χωρίζεται σε τρεις ζώνες με βάση τις σεισμικές εντάσεις που αναμένονται σε κάθε
περιοχή. Για κάθε ζώνη, οι τιμές υπολογισμού για τη μέγιστη επιτάχυνση του εδάφους A_{max} δίνονται στον ακόλουθο Πίνακας 10, ως ποσοστό της επιτάχυνσης της βαρύτητας (g).

Πίνακας 10: Μέγιστη επιτάχυνση εδάφους ανά ζώνη

<table>
<thead>
<tr>
<th>Ζώνη</th>
<th>A_{max} (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Η περιοχή μελέτης του έργου ανήκει στην πιο σεισμογενή περιοχή της Κύπρου, η οποία βρίσκεται στην Ζώνη 3. Η Ζώνη 3 χαρακτηρίζει την πλέον σεισμογενή περιοχή της Κύπρου που εκτείνεται από τα παράλια της Πάφου μέχρι την Αμμόχωστο και συσχετίζεται με το «Κυπριακό Τόξο» (Παράρτημα 1, Χάρτης 06-Σεισμικότητα). Οι περισσότεροι σεισμοί παρουσιάζονται στα θαλάσσια ύδατα της περιοχής.

Κατά το σχεδιασμό του έργου έχει ληφθεί υπόψη ότι η μέγιστη επιτάχυνση ανέρχεται στα 115cm/s². Αφού μέρος του έργου βρίσκεται σε ζώνη υψηλού σεισμικού κινδύνου, θα πρέπει να ληφθεί υπόψη ο κατάλληλος σεισμικός κώδικας της Ζώνης 3.

5.13 Υφιστάμενη Ποιότητα της Ατμόσφαιρας

Στο μεγαλύτερο τμήμα της μήκους, η περιοχή μελέτης δεν παρουσιάζει ανθρωπογενείς πηγές ρύπων στην ατμόσφαιρα με αποτέλεσμα κύρια επιβάρυνση να αποτελεί η σκόνη από φυσικές πηγές. Στην περιοχή μελέτης οι κυρίωτερες επιβαρύνσεις περιλαμβάνουν τον Ηλεκτροπαραγωγό Σταθμός και την Τσιμεντοβιομηχανία Βασιλίκου και τον Ηλεκτροπαραγωγό Σταθμός της Μονής.

Η γύρω περιοχή παρουσιάζει μικρής έντασης αγροτική / κηποτορική δραστηριότητα χωρίς να παρουσιάζονται όμως σημαντικές ανθρωπογενείς πηγές θορύβου ή ρύπων στην ατμόσφαιρα. Η ποιότητα της ατμόσφαιρας δεν αποτελεί πρωτεύων θέμα έρευνας για το υπό εξέταση έργο λόγω της φύσης του έργου.
5.14 Ακουστικό Περιβάλλον
Ο θόρυβος δεν αποτελεί σημαντικό παράγοντα για το έργο. Παρόλο αυτά θεωρείται σκόπιμο να γίνει αναφορά στο θέμα για σκοπούς πληρότητας της περιγραφής της περιοχής.

Η περιοχή μελέτης είναι υπαίθρια και χαρακτηρίζεται από μεγάλη τοπική οδική κυκλοφορία. Κύρια τοπική πηγή θορύβου θεωρείται ο αυτοκινητόδρομος Λευκωσίας-Λεμεσού καθώς και οι δρόμοι που οδηγούν στις κοινότητες της περιοχής. Η διακίνηση οχημάτων στους χωμάτινους δρόμους που γειτνιάζουν με την άμεση περιοχή μελέτης είναι πολύ αραιή για να έχει οποιοδήποτε σημαντική έκταση.

Τα επίπεδα θορύβου στον δρόμο Λευκωσίας – Λεμεσού εκτιμάται να κυμαίνονται μεταξύ 100-125 dBA LDEN (βασισμένο στην μέση οδική κυκλοφορία του 2007, 10000 κινήσεις/μέρα). Οι τοπικοί δρόμοι δεν παρουσιάζουν σημαντική οδική κυκλοφορία και τα επίπεδα θορύβου που αναμένονται να έχουν δεν ξεπερνούν τα 60 dBA LDEN σε απόσταση 10 m από το δρόμο (μέχρι 1000 κινήσεις/μέρα).

5.15 Μετεωρολογικά Χαρακτηριστικά
Η ανάλυση που παρουσιάζεται έχει γίνει με βάση δεδομένα της Μετεωρολογικής Υπηρεσίας από το Μετεωρολογικό σταθμό στο Ζύγι και τα δεδομένα αυτά περιλαμβάνουν ανεμολογικά στοιχεία και στοιχεία για τη θερμοκρασία, τη βροχόπτωση, την ηλιοφάνεια, την υγρασία, και την εξάτμιση στην περιοχή μελέτης του έργου.

5.15.1 Βροχόπτωση
Η μέση ετήσια βροχόπτωση πάνω από ολόκληρη την Κύπρο είναι περίπου 480 mm (μέση τιμή για την περίοδο 1951-1980). Η πιο χαμηλή ετήσια βροχόπτωση στην Κύπρο ήταν 182 mm κατά το υδρολογικό έτος Οκτώβρης 1972-Σεπτέμβρης 1973 και η πιο ψηλή 759 mm το 1968-69. Η επίδραση του ανάγλυφου της ξηράς πάνω στην κατανομή της βροχόπτωσης είναι σημαντική. Η μέση ετήσια βροχόπτωση στις νοτιοδυτικές
προσήνεμες περιοχές της οροσειράς του Τροόδους αυξάνεται από 450 περίπου χιλιοστόμετρα στους πρόποδες σε 1,100 mm στην κορυφή του Ολύμπου.

Στις υπήνεμες πλαγιές, η βροχόπτωση ελαττώνεται σταθερά κατεβαίνοντας προς τα βόρεια και τα ανατολικά με τιμές μεταξύ 300 και 350 mm στην κεντρική πεδιάδα και τις πεδινές νοτιοανατολικές περιοχές. Η οροσειρά του Πενταδακτύλου στο βόρειο τμήμα του νησιού προκαλεί σχετικά μικρή αύξηση στη βροχόπτωση που φθάνει στα 550 mm στις κορυφογραμμές της. Οι περισσότερες βροχές πέφτουν στην περίοδο από το Νοέμβριο μέχρι το Μάρτιο. Την Ανοιξιά και το Φθινόπωρο, οι βροχές είναι κυρίως τοπικές. Η βροχόπτωση του καλοκαιριού είναι πολύ χαμηλή, οι βροχές έχουν συνήθως τοπικό χαρακτήρα και πέφτουν στις ορεινές περιοχές και στην κεντρική πεδιάδα κατά τις πρώτες απογευματινές ώρες. Χιονόπτωση συμβαίνει σπάνια στις πεδινές περιοχές και στην οροσειρά του Πενταδακτύλου, συμβαίνει όμως συχνά κάθε χειμώνα σε περιοχές της οροσειράς του Τροόδους με υψόμετρο πάνω από 1000 m.

5.15.2 Θερμοκρασία

Οι μέσες ημερήσιες θερμοκρασίες στην περιοχή μελέτης κυμαίνονται από 11.8-24.68 °C. Συγκεκριμένα οι χαμηλότερες θερμοκρασίες παρουσιάζονται κατά τους μήνες Ιανουάριο, Φεβρουάριο 6.8 °C και 6.7 °C, αντίστοιχα. Οι ψηλότερες παρουσιάζονται κατά τους μήνες Ιούλιο, Αύγουστο, 32.9 °C και 33 °C, αντίστοιχα. Η ανάλυση της θερμοκρασίας βασίστηκε σε στοιχεία που του σταθμού στο Ζύγι κατά την περίοδο 2000-2009 (Πίνακας 11).
Πίνακας 11: Μηνιαία Κλιματολογικά Στατιστικά Στοιχεία (2000-2009)

<table>
<thead>
<tr>
<th>Μηνιαία Κλιματολογικά Στατιστικά Στοιχεία 2000 - 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αριθμός Μετεωρολογικού Σταθμού: 630-9061</td>
</tr>
<tr>
<td>Όνομα Μετεωρολογικού Σταθμού: ZYGI (A.R.I)</td>
</tr>
<tr>
<td>Υψόμετρο: 40m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
<th>ANNUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέση Ημερήσια Μέγιστη Θερμοκρασία (°C)</td>
<td>16.8</td>
<td>17.6</td>
<td>20.6</td>
<td>23.6</td>
<td>27.1</td>
<td>30.8</td>
<td>32.9</td>
<td>33</td>
<td>31.2</td>
<td>28.4</td>
<td>23.3</td>
<td>18.5</td>
</tr>
<tr>
<td>Μέση Ημερήσια Ελάχιστη Θερμοκρασία (°C)</td>
<td>6.8</td>
<td>6.7</td>
<td>7.8</td>
<td>10.8</td>
<td>14.1</td>
<td>17.6</td>
<td>20.3</td>
<td>20.8</td>
<td>18.4</td>
<td>15.4</td>
<td>11.7</td>
<td>8.8</td>
</tr>
<tr>
<td>Μέση Ημερήσια Θερμοκρασία (°C)</td>
<td>11.8</td>
<td>12.1</td>
<td>14.2</td>
<td>17.2</td>
<td>20.6</td>
<td>24.2</td>
<td>26.6</td>
<td>26.9</td>
<td>24.8</td>
<td>21.9</td>
<td>17.5</td>
<td>13.7</td>
</tr>
<tr>
<td>Μέση Μηνιαία Μέγιστη Θερμοκρασία (°C)</td>
<td>20.4</td>
<td>22.3</td>
<td>25.8</td>
<td>29.9</td>
<td>33.5</td>
<td>36.6</td>
<td>37.1</td>
<td>36.7</td>
<td>35</td>
<td>33.4</td>
<td>27.5</td>
<td>22.4</td>
</tr>
<tr>
<td>Μέση Μηνιαία Ελάχιστη Θερμοκρασία (°C)</td>
<td>1.6</td>
<td>1</td>
<td>3.1</td>
<td>6.2</td>
<td>9.3</td>
<td>13.9</td>
<td>17</td>
<td>17.8</td>
<td>14.8</td>
<td>10.5</td>
<td>6.7</td>
<td>2.5</td>
</tr>
<tr>
<td>Πιο ψηλή Μηνιαία Μέγιστη Θερμοκρασία (°C)</td>
<td>21.6</td>
<td>26.5</td>
<td>29.7</td>
<td>33.4</td>
<td>36.8</td>
<td>40</td>
<td>39.6</td>
<td>39.8</td>
<td>37.7</td>
<td>36</td>
<td>30.5</td>
<td>25.4</td>
</tr>
<tr>
<td>Πιο χαμηλή Μηνιαία Ελάχιστη Θερμοκρασία (°C)</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.5</td>
<td>4</td>
<td>7.5</td>
<td>11.7</td>
<td>15.5</td>
<td>16.2</td>
<td>13.4</td>
<td>4.5</td>
<td>3</td>
<td>-2.5</td>
</tr>
<tr>
<td>Μέσος Αριθμός Ημερών με Πάγετο Άξια</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Μέση Ημερήσια Θερμοκρασία Ετήσιας Εξάτμισης (°C)</td>
<td>4.4</td>
<td>4.8</td>
<td>6.2</td>
<td>8.9</td>
<td>11</td>
<td>15.3</td>
<td>18</td>
<td>18.5</td>
<td>16</td>
<td>12.8</td>
<td>8.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Πιο χαμηλή Θερμοκρασία Επιφάνειας Εξάτμισης (°C)</td>
<td>-3.4</td>
<td>-3.5</td>
<td>-1.8</td>
<td>2.6</td>
<td>3</td>
<td>9</td>
<td>13.5</td>
<td>14.4</td>
<td>10.6</td>
<td>2</td>
<td>0</td>
<td>-4.3</td>
</tr>
<tr>
<td>Μέσος Αριθμός Ημερών με Επιφανές Εξάτμιση</td>
<td>2.3</td>
<td>1.4</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Μέση Ημερήσια Διάρκεια Ηλιοφάνειας (Ορειβάλει)</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Μέση Σχετική Υγρασία 08:00 T.E.X (%)</td>
<td>77</td>
<td>78</td>
<td>73</td>
<td>62</td>
<td>59</td>
<td>58</td>
<td>63</td>
<td>65</td>
<td>61</td>
<td>59</td>
<td>66</td>
<td>76</td>
</tr>
<tr>
<td>Μέση Σχετική Υγρασία 13:00 T.E.X (%)</td>
<td></td>
</tr>
<tr>
<td>Μέση Ημερήσια Ροή (mm)</td>
<td>1.8</td>
<td>1.8</td>
<td>2.3</td>
<td>4.4</td>
<td>5.5</td>
<td>6.6</td>
<td>6.9</td>
<td>6.2</td>
<td>4.9</td>
<td>3.9</td>
<td>2.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Μέση Ημερήσια Ροή στα 7m (km)</td>
<td>68</td>
<td>65</td>
<td>68</td>
<td>82</td>
<td>99</td>
<td>90</td>
<td>80</td>
<td>74</td>
<td>56</td>
<td>63</td>
<td>59</td>
<td>75</td>
</tr>
<tr>
<td>Μέση Μηνιαία Βορειότατη Ροή (mm)</td>
<td>86.1</td>
<td>64.6</td>
<td>27.1</td>
<td>16</td>
<td>7.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.2</td>
<td>25.9</td>
<td>41.8</td>
<td>108.1</td>
</tr>
<tr>
<td>Κανονική Βορειότατη Ροή (mm) (1961-1990)</td>
<td>84</td>
<td>67</td>
<td>43</td>
<td>19</td>
<td>6.6</td>
<td>1</td>
<td>0</td>
<td>0.4</td>
<td>1</td>
<td>22</td>
<td>38</td>
<td>92</td>
</tr>
</tbody>
</table>

5.16 Ανθρωπογενεύς Περιβάλλον

5.16.1 Διοικητικά Ορία και Επηρεαζόμενη Γη

Η περιοχή μελέτης εγκατάστασης της νέας γραμμής μεταφοράς της ΑΗΚ ανήκει στην επαρχία Λάρνακας και επαρχία Λεμεσού. Πιο συγκεκριμένα ξεκινώντας η γραμμή από το σταθμό του Βασιλικού βρίσκεται στην κοινότητα Μαρί που ανήκει στην επαρχία Λάρνακας ακολούθως η πορεία της γραμμής περνάει από τις κοινότητες Πεντάκωμο, Μοναγρούλλη, Μονή και Πύργος που ανήκουν στην επαρχία Λεμεσού. Μεγάλο μέρος της γραμμής διέπεται από τους κανονισμούς της Δήλωσης Πολιτικής ενώ ένα μικρό μέρος διέπετε από το τοπικό σχέδιο Λεμεσού.
Στόχος της Δήλωσης Πολιτικής είναι η δημιουργία ενός ολοκληρωμένου πλαισίου, με βάση το οποίο θα ρυθμίζεται η ανάπτυξη σε περιοχές οι οποίες δεν εμπίπτουν σε Τοπικά Σχέδια, διασφαλίζοντας την αξιοποίηση των αναπτυξιακών δυνατοτήτων κάθε περιοχής στον βέλτιστο βαθμό, παράλληλα με την προστασία του περιβάλλοντος. Αναμένεται πολύ σύντομα να δημοσιευτεί η αναθεώρηση των πολεοδομικών ζωνών, μετά την ολοκλήρωση των ενστάσεων.

Τα Τοπικά Σχέδια προδιαγράφουν τις βασικές αρχές μέσω των οποίων ελέγχεται και προγραμματίζεται η ανάπτυξη στην περιοχή του εκάστοτε Τοπικού Σχεδίου και επιδιώκουν το πλαίσιο ανάπτυξης της περιοχής. Αφορά κυρίως, προτάσεις σχετικές με όλους τους τομείς της οικονομίας (εμπόριο, βιομηχανία-βιοτεχνία, τουρισμό, γεωργία, κτηνοτροφία κ.λ.π.), τις υποδομές (κοινωνικές, κυκλοφοριακές κ.λ.π) και τον κτηριολογικό-οικοδομικό κανονισμό. Οι περιοχές οι οποίες βρίσκονται έξω από τις περιοχές ανάπτυξης του Τοπικού Σχεδίου θεωρούνται ύπαιθρος ή αστικοαγροτικές παρυφές και σε αυτές αποθαρρύνεται η επέκταση αστικών χρήσεων.

5.16.2 Υφιστάμενες Πολεοδομικές Ζώνες

Η περιοχή μελέτης εγκατάστασης της νέας γραμμής μεταφοράς της ΑΗΚ ανήκει στην επαρχία Λάρνακας και επαρχία Λεμεσού. Πιο συγκεκριμένα ξεκινώντας η γραμμή από το σταθμό του Βασιλικού βρίσκεται στην κοινότητα Μαρί που ανήκει στην επαρχία Λάρνακας και διέπεται από τη Δήλωση Πολιτικής ακολούθως η πορεία της γραμμής περνάει από τις κοινότητες Πεντάκωμο, Μοναγρούλλι, Μονή και Πύργος που ανήκουν στην επαρχία Λεμεσού και διέπεται από το Τοπικό σχέδιο της Λεμεσού.

Σύμφωνα με την Δήλωση Πολιτικής το προτεινόμενο έργο βρίσκεται σε Ζώνη Προστασίας (Z1, Z3) και σε Γεωργική Ζώνη (Γ3) (Παράρτημα 1, Χάρτης 02-Κτηματικος Χάρτης και Πολεοδομικές Ζώνες). Η περιγραφή των ζωνών με βάση τη Δήλωση Πολιτικής φαίνεται στον Πίνακα 12.
Πίνακας 12: Περιγραφή των Πολεοδομικών ζωνών με βάση τη Δήλωση Πολιτικής.

<table>
<thead>
<tr>
<th>Ζώνες</th>
<th>Ανώτατος Συντελεστής Δόμησης</th>
<th>Ανώτατο Ποσοστό Κάλυψης</th>
<th>Ανώτατος Αριθμός Ορόφων</th>
<th>Ανώτατο Ύψος σε μέτρα</th>
<th>μέτρα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Η1</td>
<td>1:20:1</td>
<td>0:70:1</td>
<td>2/3</td>
<td>8:30/11:40</td>
<td></td>
</tr>
<tr>
<td>Η2</td>
<td>0:90:1</td>
<td>0:50:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η2γ</td>
<td>0:85:1</td>
<td>0:45:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η2β</td>
<td>0:80:1</td>
<td>0:45:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η3</td>
<td>0:60:1</td>
<td>0:35:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η4</td>
<td>0:40:1</td>
<td>0:25:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η4α</td>
<td>0:50:1</td>
<td>0:30:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η5</td>
<td>0:30:1</td>
<td>0:20:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η5α</td>
<td>0:35:1</td>
<td>0:20:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η6</td>
<td>0:20:1</td>
<td>0:20:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η6α</td>
<td>0:25:1</td>
<td>0:15:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η6β</td>
<td>0:20:1</td>
<td>0:15:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η7</td>
<td>0:15:1</td>
<td>0:15:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Η8</td>
<td>0:10:1</td>
<td>0:10:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Π1</td>
<td>0:15:1</td>
<td>0:15:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Π2</td>
<td>0:10:1</td>
<td>0:10:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Ε1</td>
<td>0:90:1</td>
<td>0:50:1</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ε2</td>
<td>0:90:1</td>
<td>0:50:1</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Β1</td>
<td>0:90:1</td>
<td>0:50:1</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Β2</td>
<td>0:90:1</td>
<td>0:50:1</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Δ1</td>
<td>Οπως καθορίζονται στη Δήλωση Πολιτικής</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ2</td>
<td>Οπως καθορίζονται στη Δήλωση Πολιτικής</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Γ1</td>
<td>0:20:1</td>
<td>0:15:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Γ2</td>
<td>0:15:1</td>
<td>0:10:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Γ3</td>
<td>0:10:1</td>
<td>0:10:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>0:06:1</td>
<td>0:06:1</td>
<td>2</td>
<td>8:30</td>
<td></td>
</tr>
<tr>
<td>Z2</td>
<td>0:03:1</td>
<td>0:03:1</td>
<td>1</td>
<td>5:00</td>
<td></td>
</tr>
<tr>
<td>Z3</td>
<td>0:01:1</td>
<td>0:01:1</td>
<td>1</td>
<td>5:00</td>
<td></td>
</tr>
<tr>
<td>Z4</td>
<td>0:005:1</td>
<td>0:005:1</td>
<td>1</td>
<td>5:00</td>
<td></td>
</tr>
</tbody>
</table>

Η: Ζώνες με επικρατούσα χρήση στην κατοικία
Πι: Ζώνης παραθεριστικής κατοικίας
Ε1: Βιοτεχνική Ζώνη περιορισμένου βαθμού οχλήρας
Ε2: Βιοτεχνική Ζώνη αυξημένου βαθμού οχλήρας
Δ1: Ζώνη στην οποία επιτρέπεται η ανέγερση υποστατικών για μαζική εκτροφή ζώων και πτηνών εξαιρουμένων των χοίρων
Δ2: Ζώνη στην οποία επιτρέπεται η ανέγερση υποστατικών για μαζική εκτροφή ζώων και πτηνών συμπεριλαμβανομένων των χοίρων.
Γ: Γεωργικές Ζώνες
Ζ: Ζώνες προστασίας (αρχαιολογικοί χώροι, χώροι φυσικής καλλονής, δάση, υδατοφράκτες, καλή γεωργική γη κ.λπ.)

Σύμφωνα με το Τοπικό σχέδιο της Λεμεσού το προτεινόμενο έργο βρίσκεται σε Γεωργική Ζώνη (Γα4, Γα5). Η περιγραφή των ζωνών με βάση το τοπικό σχέδιο Λεμεσού φαίνεται στον πιο κάτω Πίνακα.
5.16.3 Υφιστάμενες Χρήσεις Γης

Το τμήμα της νέας γραμμής μεταφοράς ηλεκτρισμού που διέπεται από τη Δήλωση Πολιτικής θα διέρχεται από περιοχές όπου οι χρήσεις γης ορίζοντας ως:

- Ζώνες προστασίας (αρχαιολογικοί χώροι, χώροι φυσικής καλλονής, δάση, υδατοφράκτες, καλή γεωργική γη κ.λπ.) και
- σε Γεωργικές ζώνες.

Το τμήμα της νέας γραμμής μεταφοράς ηλεκτρισμού που διέπεται από το τοπικό σχέδιο Λεμεσού θα διέρχεται από περιοχές όπου οι χρήσεις γης ορίζοντας ως

- "Υπαίθρος (Γα)."

5.16.4 Ιδιαίτερα Χαρακτηριστικά / Στοιχεία Αναφοράς / Αρχαιότητες

Η περιοχή εγκατάστασης της γραμμής μεταφοράς δεν παρουσιάζει ενδιαφέρον από αρχαιολογικής άποψης και δεν παρουσιάζει ιδιαίτερα πολιτιστικά χαρακτηριστικά που να χρήζουν προσοχής ή ανάλυσης (Παράρτημα 1, Χάρτης 12-Αρχαιολογικοί χώροι).
5.16.5 Τοπίο
Το τοπίο της περιοχής είναι λοφώδες και χαρακτηρίζεται από φρυγανική κυρίως βλάστηση. Κύριο χαρακτηριστικό του τοπίου αποτελεί ο αυτοκινητόδρομος Λευκωσίας-Λεμεσού.

Στην ευρύτερη περιοχή από την οποία διέρχεται το έργο βρίσκεται και η περιοχή Ασγάτας, σε απόσταση περίπου 2,5 km νότια του υπό μελέτη έργου, που ανήκει στο Ευρωπαϊκό Δικτύο Natura 2000, το οποίο βασίζεται στην προστασία και διαχείριση σημαντικών ειδών και οικοτόπων, στην Κύπρο (Παράρτημα 1, Χάρτης 09-Περιοχές Natura 2000).
Η περιοχή βρίσκεται μεταξύ των χωριών Καλαβασός και Ασγάτα, στο ανατολικότερο σημείο της επαρχίας Λεμεσού.
Τα πιο αξιόλογα στοιχεία, σχετικά με την οικολογική ποιότητα και σημασία της περιοχής, σχετίζονται με την πλούσια χλωρίδα της και την παρουσία τριών πολύ σπάνιων ενδημικών φυτών του Παραρτήματος Β της Οδηγίας 92/43/EΟΚ: Astragalus macrocarpus ssp. lefkarensis, Ophrys kotschyi και Phlomis brevibracteata.
Αυτή η περιοχή φιλοξενεί ένα σημαντικό αριθμό ενδημικών φυτών της Κύπρου. Συγκεκριμένα, στην περιοχή μέχρι στιγμής έχουν εντοπιστεί συνολικά 23 ενδημικά είδη. Επιπλέον, περισσότερα από 15 είδη Ορχιδέων φυτρώνουν εντός της περιοχής ΦΥΣΗ 2000.

5.16.6 Οδικό Δίκτυο
Το οδικό δίκτυο της περιοχής είναι ανεπτυγμένο και περιλαμβάνει μέρος του αυτοκινητόδρομου Λευκωσίας-Λεμεσού καθώς και μέρος του παλαιού δρόμου Λευκωσίας-Λεμεσού. Ανεπτυγμένο είναι επίσης το δίκτυο ασφαλτών δρόμων που συνδέει τις κοινότητες της περιοχής καθώς και το οδικό δίκτυο που οδηγεί στα παράλια. Στην περιοχή υπάρχει και σημαντικός αριθμός χωμάτινων δρόμων.
5.17 Πληθυσμική, Πολιτιστική / Κοινωνική και Οικονομική Υποδομή

Ο πληθυσμός της υπό μελέτης περιοχής, σύμφωνα με την τελευταία απογραφή πληθυσμού που έγινε το 2001, ανέρχεται σε 2775 κατοίκους.
Ο πληθυσμός αυτός είναι το σύνολο των κατοίκων από τις πλησιέστερες Κοινότητες της περιοχής μελέτης, Μαρί, Μοναγρούλλι, Πεντάκωμο, Μονή και Πύργο.
Στον πίνακα που ακολουθεί φαίνεται και αναλυτικά ο πληθυσμός ανά Κοινότητα σύμφωνα με την τελευταία απογραφή πληθυσμού που έγινε το 2001.

Πίνακας 13: Πληθυσμικά στοιχεία

<table>
<thead>
<tr>
<th>Δήμοι & Χωριά</th>
<th>Πληθυσμός</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μαρί</td>
<td>177</td>
</tr>
<tr>
<td>Μοναγρούλλι</td>
<td>471</td>
</tr>
<tr>
<td>Πεντάκωμο</td>
<td>388</td>
</tr>
<tr>
<td>Μονή</td>
<td>391</td>
</tr>
<tr>
<td>Πύργος</td>
<td>1348</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>2775</td>
</tr>
</tbody>
</table>

Απογραφή Πληθυσμού 2001, Τόμος ΙΙ: Στοιχεία κατα Επαρχία, Δήμο / Κοινότητα, Στατιστική Υπηρεσία, Υπουργείο Οικονομικών.

5.18 Βιολογικό Περιβάλλον

Το βιολογικό περιβάλλον της ευρύτερης περιοχής μελέτης αποτελεί τυπικό οικοσύστημα για την Κύπρο. Η χλωρίδα της ευρύτερης περιοχής που πρόκειται να κατασκευαστεί το προτεινόμενο έργο δεν παρουσιάζει κάποιο ιδιαίτερο χαρακτηριστικό.
Στις παρακάτω ενότητες περιγράφεται με λεπτομέρεια το βιολογικό περιβάλλον της περιοχής μελέτης καθώς και της ευρύτερης περιοχής.

Η φυτοκάλυψη της περιοχής είναι αραιή και καλύπτεται από αραιή θαμνώδη βλάστηση όπως αυτό φαίνεται και στις εικόνες 4, 5 που ακολουθούν. Παρόλο που το μεγαλύτερο μέρος του έργου ανήκει σε πολεοδομικές ζώνες προστασίας της φύσης του τοπίου (Z1, Z3) εντούτοις η περιοχή αυτή δεν περιλαμβάνεται σε ζώνες προστασίας Natura εφόσον δεν υπάρχουν απειλούμενα/ προστατευόμενα είδη φυτών και ζώων, παρά την παρουσία διάφορων ενδημικών ειδών.
Εικόνα 4: Φυτοκάλυψη της περιοχής Μελέτης

Εικόνα 5: Φυτοκάλυψη της περιοχής Μελέτης
5.18.1 Χλωρίδα

Πίνακας 14: Κατάλογος καταγεγραμμένων φυτών στην παρούσα μελέτη

<table>
<thead>
<tr>
<th>α/α</th>
<th>Γένος είδος</th>
<th>Οικογένεια</th>
<th>Κοινή ονομασία</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Alhagi maurorum</td>
<td>Leguminosae</td>
<td>Αλωνιά</td>
</tr>
<tr>
<td>2.</td>
<td>Asparagus stipularis</td>
<td>Liliaceae</td>
<td>Αγρελιά</td>
</tr>
<tr>
<td>3.</td>
<td>Bromus rubens</td>
<td>Poaceae</td>
<td>Βρωμόχορτο</td>
</tr>
<tr>
<td>4.</td>
<td>Calicotome villosa</td>
<td>Leguminosae</td>
<td>Ρασιήν</td>
</tr>
<tr>
<td>5.</td>
<td>Capparis spinosa</td>
<td>Capparaceae</td>
<td>Καππαρκά</td>
</tr>
<tr>
<td>6.</td>
<td>Ceratonia siliqua</td>
<td>Leguminosae</td>
<td>Χαρουπιά</td>
</tr>
<tr>
<td>7.</td>
<td>Cistus sp.</td>
<td>Cistaceae</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>Conyza borianensis</td>
<td>Compositae</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>Ferula communis</td>
<td>Umbelliferae</td>
<td>Αναθρήκα</td>
</tr>
<tr>
<td>10.</td>
<td>Olea europea</td>
<td>Oleaceae</td>
<td>Αγριελιά</td>
</tr>
<tr>
<td>11.</td>
<td>Phalaris minor</td>
<td>Gramineae</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>Prasium majus</td>
<td>Labiatae</td>
<td>-</td>
</tr>
<tr>
<td>13.</td>
<td>Pistacia lentiscus</td>
<td>Anacardiaceae</td>
<td>Σχινία</td>
</tr>
<tr>
<td>14.</td>
<td>Ranunculus bullatus</td>
<td>Ranunculaceae</td>
<td>Προβιατάρης</td>
</tr>
<tr>
<td>15.</td>
<td>Rosmarinus officinalis</td>
<td>Labiatae</td>
<td>Δεντρολίβανο</td>
</tr>
<tr>
<td>16.</td>
<td>Roza canina</td>
<td>Rosaceae</td>
<td>Αγριοτριανταφυλλιά</td>
</tr>
<tr>
<td>17.</td>
<td>Sarcopoterium spinosum</td>
<td>Rosaceae</td>
<td>Μαζίν</td>
</tr>
</tbody>
</table>
5.18.2 Οικότοποι

Οι τύποι οικότοπων που καταγράφηκαν στη περιοχή σύμφωνα με την οδηγία 92/43 ΕΟΚ είναι κυρίως του τύπου 5420 (Φρύγανα με Sarcopoterium spinosum (Cisto-Micromerietea) και Θερμομεσογειακοί και προ-στεππικοί θαμνώνες (τύπος οικότοπου 5330).

Αναγνωρίστηκαν οι ακόλουθοι οικότοποι τύποι 5330:

• Θερμομεσογειακοί και προ-στεππικοί θαμνώνες (Crataegus azarolus)
 Είναι χαρακτηριστική βλάστηση της Θερμομεσογειακής και προ-ερημικής ζώνης με κυρίαρχο είδος την μοσφιλιά (Crataegus azarolus).

• Θερμομεσογειακοί και προ-στεππικοί θαμνώνες με Genista sp.
 Είναι χαρακτηριστική βλάστηση της Θερμομεσογειακής και προ-ερημικής ζώνης με κυρίαρχα είδη το ρασιή (Genista sp). Στην περιοχή υπάρχει σημαντική παρουσία η οποία ευνοήθηκε από τις συνθήκες που επικρατούν.

• Θερμομεσογειακοί και προ-στεππικοί θαμνώνες με Calicotone Villosa
 Είναι μικτή κατάσταση, με χαρακτηριστική βλάστηση της Θερμομεσογειακής και προ-ερημικής ζώνης, η οποία αποτελείται από το Calicotone Villosa (σπάθαλος) και τα φρύγανα.

• Φρύγανα
 Τα φρύγανα αποτελούνται από χαμηλούς σκληρόφυλλους, ημισφαιρικούς θάμνους της
παραλιακής Θερμομεσογειακής ζώνης που συνήθως φυλλοβολούν το καλοκαίρι. Η παρουσία και η ανάπτυξή τους είναι πιο καλή στην ανατολική παρά στην δυτική Μεσόγειο.

Η περιοχή εγκατάστασης της νέας γραμμής δεν εμπίπτει εντός περιοχών Natura 2000 όπως αυτές έχουν οριστεί από το Διεθνές Τμήμα Περιβάλλοντος (Υπουργείο Γεωργίας, Φυσικών Πόρων και Περιβάλλοντος).

5.18.3 Πανίδα
Η πανίδα της ευρύτερης περιοχής διερευνήθηκε με απευθείας καταγραφές στην περιοχή μελέτης κατά την διάρκεια της άνοιξης του 2010. Γενικά, η περιοχή δεν παρουσιάζει ιδιατερότητες όσον αφορά την πανίδα.

5.18.4 Ορνιθοπανίδα
Η περιγραφή της ορνιθοπανίδας της περιοχής βασίστηκε σε επιτόπιες επισκέψεις κατά την περίοδο Μαΐου-Ιουνίου 2010. Επιπρόσθετα χρησιμοποιήθηκαν βιβλιογραφικά στοιχεία καθώς και αναφορές από σχετικές με την περιοχή μελέτες.

Κατά τη διάρκεια των παρατηρήσεων στην περιοχή έχουν αναγνωριστεί συνολικά 11 διαφορετικά είδη πουλιών από 9 διαφορετικές οικογένειες (Πίνακας 15).

Στο πίνακα περιέχονται όλα τα είδη τα οποία έχουν παρατηρηθεί στη περιοχή, οι οικογένειες στις οποίες ανήκουν, τα διάφορα παρατήματα διαφόρων διεθνών συμβάσεων στα οποία ανήκουν, καθώς επίσης και σε ποια κατάσταση βρίσκονται στη Κύπρο σχετικά με το αν αναπαράγονται, μεταναστεύουν κλπ..
Πίνακας 15: Πουλιά που παρατηρήθηκαν στην περιοχή όπου θα εγκατασταθεί η νέα γραμμή

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Ελληνική ονομασία</th>
<th>Αγγλική ονομασία</th>
<th>009/147/EC</th>
<th>Σύμβαση Βέρνης</th>
<th>Σύμβαση CITES</th>
<th>Σύμβαση Βόννης</th>
<th>Κατάσταση στην Κύπρο*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Falco tinnunculus</td>
<td>Kestrel</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>A, MK, ME</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Alectoris Chukar</td>
<td>Chukar</td>
<td>II/B</td>
<td>III</td>
<td></td>
<td>A, MK</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Columba livia</td>
<td>Rock dove</td>
<td>II/A</td>
<td>III</td>
<td></td>
<td>A, MK</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Galerida cristata</td>
<td>Crested Lark</td>
<td>III</td>
<td>A</td>
<td></td>
<td>A, MK</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Hirundo rustica</td>
<td>Barn swallow</td>
<td>II</td>
<td>A, ME</td>
<td></td>
<td>A, MK</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Oenanthe oenanthe</td>
<td>Northen wheatear</td>
<td>II</td>
<td>ME</td>
<td></td>
<td>A, ME</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Oenanthe cypriaca</td>
<td>Cyprus wheatear</td>
<td>I</td>
<td>III</td>
<td></td>
<td>A, ME</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cettia cetti</td>
<td>Cetti’s Warbler</td>
<td>II</td>
<td>A, MK</td>
<td></td>
<td>A, MK</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pica pica</td>
<td>Magpie</td>
<td>II/B</td>
<td>A, MK</td>
<td></td>
<td>A, MK</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Corvus corone cornix</td>
<td>Hooded crow</td>
<td>II/B</td>
<td>A, MK</td>
<td></td>
<td>A, MK</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Passer domesticus</td>
<td>House sparrow</td>
<td>A, MK</td>
<td></td>
<td></td>
<td>A, MK</td>
<td></td>
</tr>
</tbody>
</table>
5.18.5 Θηλαστικά

Καταγράφηκαν πέντε είδη θηλαστικών τα οποία είναι κοινά στο μεγαλύτερο μέρος της Κύπρου. Τρία από αυτά είναι ενδημικά: ο σκαντζόχοιρος (Hiemiechinus auritus dorotheae), ο λαγός (Lepus europaeus cyprius) και η αλεπού (Vulpes vulpes indutus) (Πίνακας 16).

Πίνακας 16: Πίνακας με Θηλαστικά της περιοχής μελέτης

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hemiechinus auritus</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lepus europeus</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mus musculus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rattus rattus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Vulpes vulpes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.18.6 Ερπετά-Αμφίβια-Ασπόνδυλα

Καταγράφηκαν τα ακόλουθα ερπετά στην περιοχή μελέτης: κυπριακό φίδι, θερκό, όχεντρα, κουρκουτάς σαύρες. Συνολικά αναγνωρίστηκαν 12 ειδή ερπετών στην περιοχή και τα οποία δίνονται στον Πίνακα 17.

Πίνακας 17: Είδη ερπετών που αναγνωρίστηκαν στην ευρύτερη περιοχή

<table>
<thead>
<tr>
<th>A/A</th>
<th>Επιστημονικό Όνομα</th>
<th>Κοινό Όνομα</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Laudakia stelio cypriaca</td>
<td>Κροκοδειλάκι</td>
</tr>
<tr>
<td>2</td>
<td>Chamaeleo chamaeleon</td>
<td>Χαμαιλέον</td>
</tr>
<tr>
<td>3</td>
<td>Cyrtodion kochyi</td>
<td>Μυσιαρός</td>
</tr>
<tr>
<td>4</td>
<td>Ophisops elegans schluteri</td>
<td>Σιελεντρούνα</td>
</tr>
<tr>
<td>5</td>
<td>Chalcides ocellatus</td>
<td>Βυζάστρα</td>
</tr>
<tr>
<td>6</td>
<td>Telecopus fallax</td>
<td>Ξυροδρόπης</td>
</tr>
<tr>
<td>7</td>
<td>Typhlops vermicularis</td>
<td>Νήλιος</td>
</tr>
<tr>
<td>8</td>
<td>Molpolon monspessulanus</td>
<td>Σαπίτης</td>
</tr>
</tbody>
</table>
6 ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ

6.1 Εισαγωγή

Στις παρακάτω παραγράφους γίνεται αξιολόγηση του υφιστάμενου περιβάλλοντος και των χαρακτηριστικών του έργου υπό σκοπό την αξιολόγηση των πιθανών περιβαλλοντικών επιπτώσεων από την υλοποίησή ή μη του έργου.

6.2 Επιπτώσεις από τη Μη Υλοποίηση του Έργου

6.2.1 Ρύπανση του νερού και των εδαφών

Η μη υλοποίησή του έργου δεν αναμένεται να επηρεάσει τα υπόγεια και επιφανειακά νερά καθώς και τα εδάφη της περιοχής.

6.2.2 Βιολογικό Περιβάλλον

Στην περίπτωση μη υλοποίησης του έργου θα παραμείνει το υφιστάμενο καθεστώς και τάσεις διατήρησης του βιολογικού περιβάλλοντος της περιοχής μελέτης.

6.2.3 Κοινωνικοοικονομικό Περιβάλλον

Η μη υλοποίηση του έργου αναμένεται να έχει αρνητικές επιπτώσεις ως προς την μελλοντική δυνατότητα εξυπηρέτησης των πολιτών από το δίκτυο της Αρχής Ηλεκτρισμού Κύπρου.

6.2.4 Υφιστάμενες Πολεοδομικές ζώνες και Αναπτυξιακή Υποδομή

Στην περιοχή του έργου δεν υπάρχει σημαντική πίεση για την επέκταση των οικιστικών, τουριστικών ή παραθεριστικών ζωνών. Η μη υλοποίηση του έργου δεν αναμένεται να επηρεάσει τις τάσεις ανάπτυξης της περιοχής του έργου, λαμβάνοντας υπόψη ότι μεγάλο μέρος της περιοχής εγκατάστασης του έργου βρίσκεται κατά μήκος του αυτοκινητόδρομου Λευκωσίας-Λεμεσού.
Το έργο αποτελεί σημαντική υποδομή για τη διασφάλιση παροχής ηλεκτρικής ενέργειας σε αστικά συμπλέγματα και οικονομικές δραστηριότητες. Η μη υλοποίηση του έργου δημιουργεί κινδύνους και ενδεχομένως να οδηγήσει μελλοντικά σε προβλήματα και διακοπές στην παροχή ηλεκτρικού ρεύματος. Ταυτόχρονα ενδεχομένως να καταστεί ανασταλτικός παράγοντας για μελλοντική ανάπτυξη αφού δεν θα υπάρχει επαρκή παροχή ηλεκτρικής ενέργειας που να επιτρέπει την επέκταση του δικτύου διανομής.

6.2.5 Οδικό Δίκτυο – Κυκλοφορία – Τάσεις
Η μη υλοποίηση του έργου δεν αναμένεται να επηρεάσει το οδικό δίκτυο ή τις τάσεις οδικής κυκλοφορίας.

6.2.6 Ηχορύπανση και Ποιότητα της Ατμόσφαιρας
Η μη υλοποίηση του έργου δεν αναμένεται να έχει οποιεσδήποτε επιπτώσεις στην ηχορύπανση και στην ποιότητα της ατμόσφαιρας της περιοχής.

6.3 Επιπτώσεις κατά την Μελέτη
Κατά την μελέτη του έργου τόσο η ΑΗΚ όσο και οι σύμβουλοι στους οποίους ανατέθηκε το έργο της αξιολόγησης των επιπτώσεων στο περιβάλλον δεν αντιμετώπισαν ιδιαίτερες αντιδράσεις από τις επηρεαζόμενες κοινότητες. Οι Κοινότητες έχουν ενημερωθεί για το προτεινόμενο έργο από την ΑΗΚ και δεν έχουν εκφράσει οποιονδήποτε προβληματισμό ή αντίρρηση.

6.4 Επιπτώσεις κατά την Κατασκευή

6.4.1 Εισαγωγή
Οι κατασκευαστικές εργασίες που περιλαμβάνει το παρόν έργο είναι οι εξής:
1. Διάνοιξη πρόσβασης προς τον χώρο ανέγερσης των πυλώνων
2. Εργασίες θεμελίωσης της βάσης των πυλώνων στις θέσεις εγκατάστασής τους
3. Σπάσιμο των υφιστάμενων βάσεων των πυλώνων 15cm πάνω από την επιφάνεια του εδάφους και μέχρι 60cm κάτω από την επιφάνεια του εδάφους και καλύψει τον χώρο με χώμα.
4. Συναρμολόγηση των νέων πυλώνων.
5. Ανάρτηση/μεταφορά των καλωδίων.

6.4.2 Επιπτώσεις στην Ποιότητα της Ατμόσφαιρας

6.4.2.1 Κριτήρια Ποιότητας της Ατμόσφαιρας
Ο πίνακας 18, προσδιορίζει τα υφιστάμενα όρια ποιότητας του αέρα σύμφωνα με την ισχύουσα Κυπριακή νομοθεσία. Επίσης δείχνει τα προτεινόμενα όρια από τον Παγκόσμιο Οργανισμό Υγείας (WHO).

Πίνακας 18: Όρια Ποιότητας της Ατμόσφαιρας

<table>
<thead>
<tr>
<th>Ρύπος</th>
<th>Παράμετρος</th>
<th>Κύπρος</th>
<th>WHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NO₂)</td>
<td>Μέση Ετήσια Τιμή</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Μέση ωριαία τιμή</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>(O₃)</td>
<td>Μέση οκταώρη τιμή</td>
<td>110</td>
<td>100-120</td>
</tr>
<tr>
<td></td>
<td>Μέση ωριαία τιμή</td>
<td>180</td>
<td>150-200</td>
</tr>
<tr>
<td>(CO)</td>
<td>Μέση 8-ωρη τιμή</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>(SO₂)</td>
<td>Μέση 24-ωρη τιμή</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Μέση ωριαία τιμή</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>(PM10)</td>
<td>Μέση 24-ωρη τιμή</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>(Pb)</td>
<td>Μέση Ετήσια Τιμή</td>
<td>0.5</td>
<td>-</td>
</tr>
</tbody>
</table>

Σημείωση: Όλες οι τιμές σε μg/m3 σε 293K και 101.3 kPa.

Ο πιο κάτω Πίνακας 19, προσδιορίζει τα υφιστάμενα και μελλοντικά όρια ποιότητας του αέρα.
Πίνακας 19: Όρια Ποιότητας του Αέρα

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Όριο (µg/m3)</th>
<th>Ημερομηνία εφαρμογής</th>
<th>Σημειώσεις</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
<td>Ετήσιο Όριο 40</td>
<td>1/1/2010</td>
<td>Επιτρέπονται 18 υπερβάσεις ανά έτος</td>
</tr>
<tr>
<td></td>
<td>Ωριαίο 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Οκτάωρο 10000</td>
<td>1/1/2005</td>
<td>Η μέση ετήσια συγκέντρωση να μην ξεπερνά τα 630 µg/m3</td>
</tr>
<tr>
<td>SO₂</td>
<td>Ετήσιο 20</td>
<td>1/1/2005</td>
<td>Προστασία οικοσυστημάτων. Επιτρέπονται 3 υπερβάσεις ανά έτος</td>
</tr>
<tr>
<td></td>
<td>24ωρο 125</td>
<td></td>
<td>Επιτρέπονται 24 υπερβάσεις ανά έτος</td>
</tr>
<tr>
<td></td>
<td>Ωριαίο 350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₄H₆</td>
<td>1 έτος 5</td>
<td>1/1/2010</td>
<td>Επιτρέπονται 35 υπερβάσεις ανά έτος</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Ετήσιο 40</td>
<td>1/1/2005</td>
<td>Επιτρέπονται 35 υπερβάσεις ανά έτος</td>
</tr>
<tr>
<td></td>
<td>24ωρο 50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.4.2.2 Επιπτώσεις στην ποιότητα της ατμόσφαιρας

Όπως έχει αναφερθεί το έργο θα δημιουργηθεί αύξηση της σκόνης κατά τη διάρκεια της κατασκευής με τις συγκεντρώσεις αιωρούμενων σωματιδίων PM10 να ξεπερνούν τα μέγιστα επιτρέπομενα όρια κατά της περιόδου των χωματουργικών έργων για αποστάσεις της τάξης των 300-500 μέτρων. Παρόλα αυτά, η απουσία ευαίσθητων χρήσεων και η μικρή χρονική διάρκεια των έργων συνιστούν ούτως ώστε να μην υπάρξουν ενοχλήσεις ή οποιαδήποτε άλλα προβλήματα.

6.4.2.3 Εκπομπές ρύπων από την λειτουργία των μηχανημάτων

Κατά την κατασκευή του έργου αναμένεται να χρησιμοποιηθεί ο εξοπλισμός που δίνεται στον Πίνακα 3: Κατάλογος χρησιμοποιημένου εξοπλισμού. Η λειτουργία του εξοπλισμού όπως περιγράφεται στον πίνακα αναμένεται να επιβαρύνει ασθενώς και βραχυχρόνια την ατμόσφαιρα της περιοχής. Αυτές χαρακτηρίζονται από έκλυση Μονοξειδίου (CO) και Διοξειδίου του άνθρακα (CO₂), οξειδίων του αζώτου (NOₓ), διοξειδίου του θείου (SO₂) καθώς και υδρογονανθράκων (HC). Η ποσότητα έκλυσης θεωρείται αμελητέα όπως και η επίπτωση που θα έχουν αυτοί οι ρύποι σε αυτή την συγκέντρωση στην ατμόσφαιρα.
6.4.3 Επιπτώσεις στο ακουστικό περιβάλλον

6.4.3.1 Κριτήρια θορύβου

Τα ανώτατα επίπεδα εκπομπής θορύβου από νέες εγκαταστάσεις προσδιορίζονται από τα κριτήρια θορύβου για το περιβάλλον που οι διάφορες Αρχές (τοπικές και κρατικές) καθορίζουν για διαφορετικές περιοχές. Στην Κύπρο δεν υπάρχουν ακόμη νομοθετικές πρόνοιες που να επιβάλλουν συγκεκριμένα επίπεδα θορύβου. Επίσης η Οδηγία 49/2002 της Ευρωπαϊκής Ένωσης, αν και εναρμονίζει τους ελεγχόμενους παραμέτρους και τη μέθοδο αξιολόγησης τους, δεν προτείνει κοινά όρια σχετικά με τον περιβαλλοντικό θόρυβο.

Με βάση τα αποτελέσματα διαφόρων μελετών, αρμόδιοι διεθνείς οργανισμοί (π.χ. ΠΟΥ) έχουν συντάξει μια σειρά από συστάσεις που αφορούν τα μέγιστα όρια θορύβου στα οποία προσφέρεται ικανοποιητική προστασία της υγείας και της ποιότητας ζωής. Οι κύριες συστάσεις που έχουν άμεση σχέση με την παρούσα μελέτη περιλαμβάνουν:

- Προστασία του ύπνου για την οποία προνοούνται μέγιστες τιμές μεταξύ 35 – 45 dB κατά τις βραδινές ώρες,
- Προστασία της ποιότητας ζωής από την παρέμβαση της επικοινωνίας, τη μείωση της ικανότητας συγκέντρωσης και της παραγωγικότητας και την πρόκληση εκνευρισμού για τις οποίες προνοούνται τιμές μέχρι 55 dB, και
- Προστασία της υγείας από την πρόκληση ψυχολογικής έντασης, πονοκεφάλων, αύξηση της πίεσης κλπ, οι οποίες προκαλούνται σε επίπεδα πέραν των 65 dB.

Η Κυπριακή Νομοθεσία δεν καθορίζει ακόμη αποδεκτά επίπεδα θορύβου που επηρεάζουν οικιστικές ή άλλες περιοχές. Το Τμήμα Περιβάλλοντος όμως έχει προτείνει αποδεκτά όρια ως εξής (Πίνακας 20).

Πίνακας 20: Αποδεκτά Όρια Θορύβου

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>(Laeq dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lden</td>
<td>55</td>
</tr>
<tr>
<td>Lday</td>
<td>65</td>
</tr>
<tr>
<td>Lnight</td>
<td>45</td>
</tr>
</tbody>
</table>
Ο θόρυβος από τα κατασκευαστικά έργα εκτιμήθηκε με βάση το Αγγλικό Πρότυπο BS 5228:84 "Noise Control on Construction and Open Sites". (Πίνακας 21)

Για τον καθορισμό κριτηρίων θορύβου από τα εργοτάξια χρησιμοποιήθηκε κοινή μέθοδος που χρησιμοποιείται στην Αγγλία και άλλες Ευρωπαϊκές χώρες και η οποία χρησιμοποιείται ευρέως και στην Κύπρο. Σύμφωνα με την κοινή πρακτική, ο εργολάβος του έργου έχει υποχρέωση να εξασφαλίσει ότι τα μέγιστα επίπεδα θορύβου 1m από παράθυρο κατοικημένου δωματίου σε σπίτι στη περιοχή των έργων δεν θα ξεπερνή για διάφορες ώρες και μέρες τα ακόλουθα επίπεδα.

Πίνακας 21: Ανώτατα Επίπεδα Θορύβου από κατασκευαστικά έργα

<table>
<thead>
<tr>
<th>Περίοδος</th>
<th>Μέγιστο επίπεδο στη πρόσοψη L_Aeq (1hour)</th>
<th>Μέγιστο στιγμιαίο επίπεδο dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δευτέρα-Παρασκευή 07.30-18.30 εκτός αργίας</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Δευτέρα-Παρασκευή 18.30-22.00 εκτός αργίας</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Καθημερινά 22.00-07.30</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Σάββατο 07.30-1300</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Σάββατο 13.00-22.00 Κυριακές & αργίες 07.30-22.00</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>

Για την παρούσα μελέτη ως μέγιστους αποδεκτούς θόρυβος από τα κατασκευαστικά έργα κατά την ημέρα (07.00 – 16.00) θεωρείται το επίπεδο των 75 dB L_Aeq (9 hour). Το έργο βρίσκεται σε απόσταση 15 μέτρων από το πλησιέστερο υποστατικό και 43 μέτρων από οικίες, οι οποίες σημειώνεται ότι βρίσκονται εκτός οικιστικής ζώνης. Επίσης οι θέσεις των πυλών βρίσκονται σε απόσταση από το πλησιέστερο υποστατικό 90 μέτρα και από την πλησιέστερη κατοικία σε απόσταση 140 μέτρων. Για το υπόλοιπο της ημέρας θεωρείται ότι δεν θα υπάρξουν κατασκευαστικά έργα.

Τα πιο πάνω κριτήρια ισχύουν εκτός αν κρατικοί ή άλλοι αρμόδιοι λειτουργοί καθορίσουν διαφορετικά κριτήρια και περιόδους.
6.4.3.2 Εκτίμηση επιπτώσεων από το θόρυβο-Μεθοδολογία για εκτίμηση παραπόνων από θόρυβο.

Ένας θόρυβος μπορεί να χαρακτηριστεί ως ενοχλητικός τη στιγμή που δεν αποτελεί μέρος του περιβάλλοντος και γίνεται αντικείμενο προσοχής του ατόμου που τον παρατηρεί. Είναι γνωστό ότι η ευαισθησία των αισθήσεων διαφέρει από άτομο σε άτομο. Σε ένα άτομο μπορεί ένας ήχος να αποτελεί όχι μόνο μέρος του περιβάλλοντος του αλλά απαραίτητος για εφησυχασμό π.χ. διάφορα ηχητικά σήματα που επιβεβαιώνουν ότι άλλα λειτουργούν ομαλά (στη εργασία και στο σπίτι), ενώ για ένα άλλο άτομο ο ίδιος ήχος να θεωρείται θόρυβος. Για αποφυγή της υποκειμενικής εκτίμησης πότε ένας ήχος μπορεί να χαρακτηριστεί ενοχλητικός ή όχι και πότε δικαιολογούνται παράπονα, διεθνείς οργανισμοί έχουν κάνει εκτεταμένες μελέτες για το καθορισμό αντικειμενικών κριτηρίων. Σε αυτές τις μελέτες χρησιμοποιήθηκαν ομάδες ανθρώπων από διαφορετικά περιβάλλοντα και κοινωνικά στρώματα, οι οποίες έχουν καταγραφεί, μελετηθεί και ταξινομηθεί στατιστικά. Με βάση τις διάφορες μελέτες καθορίστηκαν τα διάφορα κριτήρια που υποδεικνύουν πότε ένας θόρυβος μπορεί να χαρακτηριστεί σαν ενοχλητικός. Η διαδικασία που ακολουθείται γενικά για να διαπιστωθεί κατά πόσο ένας θόρυβος είναι ενοχλητικός είναι ως ακολούθως:

- (α) καταμέτρηση του επίπεδου του περιβαλλοντικού θορύβου χωρίς την επίδραση του εξωγενή θορύβου (ο οποίος θα μπορούσε να χαρακτηριστεί ως ενοχλητικός),
- (β) καταμέτρηση του επίπεδου του περιβαλλοντικού θορύβου με την επίδραση του εξωγενή θορύβου, και
- (γ) σύγκριση των δύο επίπεδων θορύβου. Η διαφορά τους δείχνει το βαθμό "αναστάτωσης" που η παρουσία του εξωγενή θορύβου προκαλεί στο υφιστάμενο περιβάλλον.

Για την εκτίμηση της πιθανότητας ενόχλησης αφαιρούμε από το τελικό διορθωμένο επίπεδο του ενοχλητικού θορύβου, το επίπεδο του περιβαλλοντικού θορύβου. Διαφορές της τάξης των 10 dB(A) και περισσότερο θεωρούνται σημαντικές και δείχνουν ότι είναι δυνατόν να εκφραστούν παράπονα. Διαφορές της τάξης των 5 dB(A) είναι οριακής...
σημασίας. Για διαφορές μικρότερες των 5 dB(A), κι’ όσον αυτές γίνονται μικρότερες, τόσο λιγότερες είναι οι πιθανότητες να εκφραστούν παράπονα. Διαφορές των -10 dB(A), δείχνουν θετικά ότι δεν πρέπει να υπάρχουν παράπονα.

Με βάση τα πιο πάνω και την εκτίμηση των επιπέδων θορύβου από το έργο, εκτιμάται ότι κατά τη διάρκεια των έργων θα υπάρχουν αυξημένα επίπεδα θορύβου σε απόσταση μέχρι και 300 μέτρα της τάξης των 73-58 dBA (1hr). Τα επίπεδα αυτά δεν ξεπερνούν τα επιτρεπόμενα όρια. Παρόλα αυτά, λαμβάνοντας υπόψη ότι όλες οι επηρεαζόμενες περιοχές δεν παρουσιάζουν άλλες πηγές θορύβου, τα αναμενόμενα επίπεδα θορύβου συνιστούν επιβάρυνση πέραν των 10 dBA από τις τιμές υποβάθρου. Εντός της απόστασης αυτής, οι επιδράσεις χαμηλού είναι εκτός κατανόησης οπότε δεν θα υπάρχει ενόχληση.

6.4.4 Δημιουργία Στερεών Αποβλήτων

Κατά την εγκατάσταση των πυλών αναμένεται η δημιουργία περίπου 8 m³ μπαζών για κάθε πυλώνα. Η εναπόθεση των μπαζών θα πρέπει να γίνει εκτός της περιοχής του έργου και σε αδειοδοτημένες εγκαταστάσεις υποδοχής του. Επίσης, επειδή οι προηγούμενες πυλόνες πρόκειται να απομακρυνθούν θα υπάρχει επιπλέον δημιουργία μπαζών από την απομάκρυνση των χαλύβδινων πυλών και των θεμελίων αυτών.

Μέρος των θεμελίων των υφιστάμενων πυλών από το έργο θα αφαιρεθούν σε βάθος 0,60m επί 0,60m τα αραιορεούν τον πυλώνα. Η επιστάση των μπαζών θα πρέπει να γίνει εκτός της περιοχής του έργου και σε αδειοδοτημένες εγκαταστάσεις υποδοχής του. Επίσης, επειδή οι προηγούμενες πυλόνες πρόκειται να απομακρυνθούν θα υπάρχει επιπλέον δημιουργία μπαζών από την απομάκρυνση των χαλύβδινων πυλών και των θεμελίων αυτών.

Ατλαντίς Συμβουλευτική Κύπρου ΛΤΔ

83
6.4.5 Επιπτώσεις στο Οδικό Δίκτυο και Δημόσια Υποδομή

Η οδική προσβασιμότητα της περιοχής δεν θα επηρεαστεί σημαντικά κατά το στάδιο κατασκευής/συναρμολόγησης των πυλώνων της νέας γραμμής. Η επιβάρυνση του τοπικού οδικού δικτύου έγκειται στην μετακίνηση του εξοπλισμού προς τις θέσεις εγκατάστασης των πυλώνων. Η επιβάρυνση αυτή αναμένεται μη σημαντική και βραχυχρόνια. Συνεπώς αναμένεται ότι δεν θα υπάρξει ενόχληση κατά τις μετακινήσεις του τοπικού κυρίως πληθυσμού στις περιοχές αυτές και δεν θα υπάρξει η ανάγκη χρήσης εναλλακτικών διαδρομών διακίνησης.

6.4.6 Επιπτώσεις στο Βιολογικό Περιβάλλον

Οι σημαντικότερες επιπτώσεις στο βιολογικό περιβάλλον της περιοχής αναμένεται να προέλθουν από τις κατασκευαστικές εργασίες για την εγκατάσταση των πυλώνων καθώς και από την δημιουργία προσβάσεων (όπου απαιτείται) στους χώρους όπου θα εγκατασταθούν οι πυλώνες.

Στις θέσεις εγκατάστασης των πυλώνων (34 συνολικά) αναμένεται η εκχέρσωση περίπου 24 m² ανά πυλώνα. Ως θέσεις των πυλώνων βρίσκονται κυρίως σε οικότοπους που χαρακτηρίζονται ως φρύγανα ενώ σε μερικές περιπτώσεις οι θέσεις βρίσκονται σε θέσεις με συναθροπική βλάστηση.

6.4.6.1 Χλωρίδα

Κατά την εγκατάσταση των πυλώνων και κατά τη διάνοιξη των προσβάσεων στις θέσεις αυτές αναμένεται η καταστροφή φρυγανικής βλάστησης. Κατά μήκος της περιοχής εγκατάστασης της νέας γραμμής μεταφοράς δεν βρέθηκαν σπάνια ή απειλούμενα είδη. Ο αριθμός και το είδος των φυτών που θα επηρεαστούν είναι περιορισμένος λόγω της φύσης του έργου και αυτός περιορίζεται στα αποτυπώματα των πυλώνων.
6.4.6.2 Πανίδα
Η εγκατάσταση των πυλών δεν επηρεάζει περιοχές φωλεοποίησης των πτηνών και για αυτό οι επιπτώσεις κατά την κατασκευή του έργου θεωρούνται αμελητέες. Οχλήσεις κατά την διάρκεια των κατασκευαστικών εργασιών θα είναι μικρές και βραχυχρόνιες. Οι οχλήσεις αυτές αναφέρονται κυρίως στον θόρυβο και την σχετική υποβάθμιση της ατμόσφαιρας της περιοχής λόγω της παραγωγής σκόνης και αεριών ρύπων κατά τις κατασκευαστικές εργασίες.

6.4.7 Επιπτώσεις στη γεωμορφολογία και υδρολογία της Περιοχής
Τα κατασκευαστικά έργα αναμένεται να δημιουργήσουν μικρές ποσότητες μπαζών ως αποτέλεσμα της εγκατάστασης των πυλώνων καθώς και της διάνοιξης προσβάσεων προς τις θέσεις των πυλώνων. Ιδιαίτερη σημασία θα πρέπει να δοθεί στις θέσεις των πυλώνων 5 έως 10 και 24 έως 31 (βλ. Χάρτη Θέσεις Πυλώνων, Παράρτημα 1, Αρ. Σχεδίου 13).

6.5 Επιπτώσεις κατά τη Λειτουργία

6.5.1 Επιπτώσεις στο Ανθρωπογενές Περιβάλλον
Στο πίνακα 22 δίνεται η έκταση που επηρεάζεται από την λειτουργία της γραμμής μεταφοράς. Η έκταση υπολογίστηκε ως μια ζώνη 20 μέτρων δεξιά και αριστερά από την γραμμή μεταφοράς.

Πίνακας 22: Ζώνη επηρεασμού

<table>
<thead>
<tr>
<th>Πολεοδομική Ζώνη</th>
<th>Έκταση</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m²</td>
<td>Km²</td>
</tr>
<tr>
<td>Z1</td>
<td>336900</td>
<td>0.34</td>
</tr>
<tr>
<td>Z3</td>
<td>11910</td>
<td>0.01</td>
</tr>
<tr>
<td>Γ3</td>
<td>68967</td>
<td>0.07</td>
</tr>
<tr>
<td>Γα4</td>
<td>99145</td>
<td>0.10</td>
</tr>
<tr>
<td>Γα5</td>
<td>21475</td>
<td>0.02</td>
</tr>
<tr>
<td>Ολικό</td>
<td>538397</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Μελέτη Περιβαλλοντικών Επιπτώσεων από τη νέα Γραμμή Μεταφοράς Ηλεκτρισμού «Βασιλικό-Μονή»
Η συνολική έκταση υπολογίστηκε στα 538397.00 τετραγωνικά μέτρα. Στην έκταση αυτή εμπίπτουν ζώνες ειδικής προστασίας, στις οποίες επιτρέπεται η ανέγερση υποστατικών εκτροφής ζώων, καθώς και αγροτικές ζώνες. Λόγω του γεγονότος ότι η γραμμή μεταφοράς δεν διασχίζει περιοχές με προοπτική την ανάπτυξη κατοικιών, οι επιπτώσεις στο ανθρωπογενές περιβάλλον περιορίζονται μόνο στις θέσεις εγκατάστασης των πυλών σε ότι αφορά τις εκτάσεις με γεωργικές εκμεταλλεύσεις.

6.5.2 Υδρογεωλογικές Συνθήκες - Ρύπανση των Υδάτων και του Εδάφους
Η λειτουργία του έργου δεν επηρεάζει την υδρογεωλογία, την ποιότητα των επιφανειακών και υπόγειων νερών καθώς και τα εδάφη της περιοχής του έργου.

6.5.3 Βιολογικό Περιβάλλον
Το βιολογικό περιβάλλον της περιοχής δεν δέχεται επιπτώσεις από την λειτουργία του έργου και αυτό οφείλεται στη φύση του έργου. Οι κυριότερες επιπτώσεις στο βιολογικό περιβάλλον προέρχονται από τα στάδια κατασκευής του έργου.

6.5.3.1 Χλωρίδα
Η λειτουργία του έργου δεν επηρεάζει την χλωρίδα της περιοχής.

6.5.3.2 Πανίδα
Το έργο αναμένεται να έχει κυρίως θετικές επιπτώσεις στον πληθυσμό της πτηνοπανίδας της περιοχής καθώς και στα μεταναστευτικά είδη αφού τα ηλεκτροφόρα καλώδια χρησιμοποιούνται ως σταθμός κατά την πτήση τους. Ο κίνδυνος πρόσκρουσης των πουλιών με τα ηλεκτροφόρα καλώδια υπάρχει, είναι όμως μικρός.

6.5.4 Ακουστικό Περιβάλλον και Ποιότητα της Ατμόσφαιρας

6.5.4.1 Ηλεκτρομαγνητικά Πεδία
Οι επιπτώσεις στην υγεία από τα ηλεκτρικά και μαγνητικά πεδία αποτελούν θέμα μελέτης εδώ και πολλά χρόνια χωρίς να έχει εξαρθεί κοινά αποδεκτό συμπέρασμα ως προς το μέγεθος ή τη φύση των κινδύνων για τον άνθρωπο. Για προληπτικούς λόγους όμως, αλλά και από σεβασμό για τις ανησυχίες του κοινού γύρω από το θέμα, διάφοροι
οργανισμοί έχουν καθορίσει μέγιστα αποδεκτά όρια ηλεκτρικών και μαγνητικών πεδίων (Πίνακας 23 και 24) τα οποία εκτιμούνται ότι προστατεύουν το κοινό προσφέροντας ‘ικανοποιητικό περιθώριο ασφάλειας’.

Πίνακας 23: Αποδεκτά όρια ηλεκτρικών πεδίων από διάφορους Οργανισμούς

<table>
<thead>
<tr>
<th>Οργανισμός</th>
<th>Μέγιστο ηλεκτρικό πεδίο (V/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRPB</td>
<td>12000</td>
</tr>
<tr>
<td>IRPA*</td>
<td>5000</td>
</tr>
<tr>
<td>IRPA**</td>
<td>10000</td>
</tr>
<tr>
<td>CENELEC</td>
<td>10000</td>
</tr>
<tr>
<td>EUROPEAN UNION (ICNIRP)*</td>
<td>5000</td>
</tr>
<tr>
<td>EUROPEAN UNION (ICNIRP)**</td>
<td>10000</td>
</tr>
</tbody>
</table>

(*) Για συνεχή έκθεση (24 ώρες)
(**) Για λίγες ώρες την ημέρα

Πίνακας 24: Αποδεκτά όρια μαγνητικών πεδίων από διάφορους Οργανισμούς

<table>
<thead>
<tr>
<th>Οργανισμός</th>
<th>Μέγιστο Αποδεκτό Μαγνητικό Πεδίο</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µΤ</td>
</tr>
<tr>
<td>NRPB</td>
<td>1600</td>
</tr>
<tr>
<td>WHO</td>
<td>500</td>
</tr>
<tr>
<td>IRPA*</td>
<td>100</td>
</tr>
<tr>
<td>IRPA**</td>
<td>1000</td>
</tr>
<tr>
<td>DIN VDE –1991</td>
<td>400</td>
</tr>
<tr>
<td>CENELEC</td>
<td>640</td>
</tr>
<tr>
<td>EU*</td>
<td>100</td>
</tr>
<tr>
<td>EU**</td>
<td>500</td>
</tr>
</tbody>
</table>

(*) Για συνεχή έκθεση (24 ώρες)
(**) Για ορισμένες ώρες ανά μέρα

Η σχεδίαση της πορείας του έργου από την ΑΗΚ έλαβε υπόψη της την προστασία του κοινού από την ηλεκτρομαγνητική ακτινοβολία. Όπως έχει αναφερθεί και πιο πάνω η γραμμή μεταφοράς δεν διέρχεται από περιοχές στις οποίες υπάρχουν κατοικίες.

Σύμφωνα με μετρήσεις που εκπονήθηκαν από την Αρχή Ηλεκτρισμού σε υφιστάμενες, ιδίως τάσης γραμμές της, τα επίπεδα που θα προκύπτουν είναι σαφώς χαμηλότερα από τα επιτρεπόμενα όρια. Η τιμή των ορίων αυτών είναι περίπου 100 µΤ (European Union, International Commission on Non-Ionizing Radiation Protection) η οποία είναι και η χαμηλότερη των μέγιστων αποδεκτών ορίων για συνεχή έκθεση σε ηλεκτρομαγνητικά πεδία.
Σε αυτό το σημείο πρέπει να αναφερθεί ότι η ΑΗΚ έχει προχωρήσει στην προσεκτική χάραξη της πορείας του έργου ώστε να διέρχεται από περιοχές όπου δεν υπάρχει σημαντική και ευαίσθητη ανθρωπινή παρουσία. Έτσι από άποψης προστασίας της υγείας του κοινού, η γραμμή αξιολογείται ότι θα έχει κατάλληλες και ασφαλείς επιδόσεις.

6.5.5 Θόρυβος
Από το έργο δεν θα προκύπτουν ενοχλητικά επίπεδα θορύβου. Μοναδική πηγή είναι το Corona effect. Το φαινόμενο παρουσιάζεται περιοδικά κάτω από κατάλληλες κλιματολογικές συνθήκες, δηλαδή σε περιόδους αυξημένης σκόνης και υγρασίας. Τα επίπεδα θορύβου μπορούν να ανέλθουν στην τάξη των 65dBA και τυπικά επηρεάζουν αποστάσεις μικρότερες από 100 μέτρα. Στην απόσταση αυτή δεν εντοπίζονται αναπτύξεις ή άλλες ευαίσθητες χρήσεις οπόταν κατά τη λειτουργία δεν προβλέπονται ενοχλήσεις.

6.5.6 Κοινωνικοοικονομικό Περιβάλλον
Από κοινωνικοοικονομικής άποψης το έργο είναι αναμφισβήτητα επωφελές αφού αφορά στη διασφάλιση της παροχής ηλεκτρικής ενέργειας σε αστικά συμπλέγματα και οικονομικές δραστηριότητες. Αν και η ανάγκη παροχής ηλεκτρικής ενέργειας υπερτερεί των οποιονδήποτε αρνητικών κοινωνικών επιπτώσεων, θα πρέπει να αναφερθούν οι αρνητικές κοινωνικές επιπτώσεις ώστε να μπορούν να λαμβάνονται υπόψη με στόχο την βελτιστοποίηση της σχεδιασμού και τη διασφάλιση της ισότιμης αντιμετώπισης των πολιτών. Κυρίως έργη ρητικάς επιπτώσεις είναι η μείωση του δικαιώματος ανάπτυξης της γης σε απόσταση 20 μέτρων ένθεν και ένθεν της γραμμής μεταφοράς καθώς και η αρνητική ψυχολογία που συχνά δημιουργεί η παρουσία γραμμών ψηλής τάσης όταν βρίσκονται κοντά σε κατοικισμένες περιοχές. Στην περίπτωση του έργου η δεύτερη επίπτωση δεν αποτελεί πρόβλημα αφού η γραμμή δεν διασχίζει κατοικισμένες περιοχές.
6.5.7 Τοπίο και αισθητικές αξίες

Η παρουσία των πυλώνων της νέας γραμμής μεταφοράς αναμένεται να επηρεάσει αρνητικά την αισθητική του τοπίου κατά μήκος της διαδρομής της νέας γραμμής. Η οπτική ρύπανση είναι μικρή μεταξύ των πυλώνων 3-14, 24-26 και 31-34 καθώς το οπτικό πεδίο κυριαρχείται από τον αυτοκινητόδρομο Λευκωσίας-Λεμεσού.

Σε ότι αφορά την αισθητική πτυχή του έργου αρνητικά αναμένεται να επηρεαστεί η περιοχή των πυλώνων 1-2, 15-23 και 27-30 και ιδιαίτερα στις περιοχές κοντά στις κορυφογραμμές, δηλ. στις περιοχές των πυλώνων 16-18 και 27-29 (βλ. Χάρτη Θέσεις Πυλώνων, Παράρτημα 1, Αρ. Σχεδίου 13).

Εδώ αξίζει να σημειωθεί το γεγονός ότι το έργο αποσκοπεί στην αναβάθμιση υφιστάμενης γραμμής, με την αντικατάσταση των υφιστάμενων πυλώνων με καινούργιους, οπότε δεν προσβλέπει στην αλλοίωση δραματικά την οπτικής αισθητικής του τοπίου.
7 ΠΡΟΤΕΙΝΟΜΕΝΑ ΜΕΤΡΑ ΜΕΙΩΣΗΣ ΤΩΝ ΕΠΙΠΤΩΣΕΩΝ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

7.1 Στόχοι και στρατηγική προστασίας και αποκατάστασης του περιβάλλοντος
Στόχος του πιο κάτω προγράμματος μέτρων αποτελεί πρωταρχικά η διατήρηση της καλής ποιότητας του περιβάλλοντος της περιοχής μελέτης, όπου ‘Καλή Ποιότητα’ ορίζεται ως η κατάσταση του περιβάλλοντος η οποία διατηρεί τις υφιστάμενες φυσικές της λειτουργίες και είναι επαρκής για την προστασία της υγείας των κατοίκων και χρηστών της περιοχής καθώς και των φυσικών της οικοσυστημάτων.

7.2 Μέτρα ενημέρωσης και εμπλοκής του κοινού και εμπλεκομένων φορέων
Προτείνεται όπως υπάρχει συνεχής και πλήρης ενημέρωση των τοπικών κοινοτήτων σχετικά με το έργο και τις λειτουργίες που επιτελεί σε όλα τα στάδια του έργου.

7.3 Μέτρα προστασίας του περιβάλλοντος κατά την κατασκευή

7.3.1 Διαχείριση εργοταξίων
Στο μέρος αυτό προτείνεται η χορηγήση του εργοταξίου και άλλων προσωρινών εγκαταστάσεων με τέτοιο τρόπο ώστε να ελαχιστοποιηθούν οι επιπτώσεις στο περιβάλλον.

Πριν την έναρξη των εργασιών, ο εργολάβος θα πρέπει να εξασφαλίσει τόσο τις απαραίτητες άδειες εισόδου και εγκαταστάσεων στους προτεινόμενους χώρους όσο και νόμιμη πρόσβαση σε αυτούς με τρόπο που δεν θα προκαλεί όχληση και ταλαιπωρία στους περίοικους και στους άλλους χρήστες της περιοχής.

Για σκοπούς μείωσης των επιπτώσεων από τα κατασκευαστικά έργα, την εγκατάσταση εργοταξίων και τη μεταφορά και αποθήκευση υλικών συστήνονται τα εξής:
- Διαβροχή χωμάτινων εκτάσεων όπου διεξάγονται έργα ή κινούνται υλικά
• Επίστρωση μόνιμων δρόμων το συντομότερο δυνατό για να αποφεύγεται η διακίνηση σε χωμάτινους δρόμους
• Να γίνει προσπάθεια εκπόνησης των χωματουργικών έργων σε περιόδους όπου το έδαφος είναι υγρό, π.χ. νωρίς την άνοιξη για χωματουργικά έργα. Να αποφεύγονται οι περιόδοι με δυνατούς ανέμους αν είναι δυνατό.
• Να τηρείται το ορόσημο εργασίας.
• Περιφραξή του χώρου.
• Τοποθέτηση υλικών, μπάζων και αποβλήτων σε κατάλληλα διαμορφωμένους χώρους και προστατευμένους από τις καρικές συνθήκες και τις όμβριες απορροές όταν ώστε να αποφεύγεται η διαρροή τους στο περιβάλλον.
• Τα μπάζα και άλλα υλικά θα πρέπει να περισυλλέγονται και απομακρύνονται το συντομότερο δυνατό.
• Τοποθέτηση κατάλληλης προειδοποιητικής και απαγορευτικής σήμανσης.
• Να υπάρχει επαρκής φωτισμός, ιδιαίτερα σε επικίνδυνους χώρους.
Η τοποθέτηση οχληρών δραστηριοτήτων (π.χ. μονάδες παραγωγής έτοιμου σκυροδέματος, συναγερμός κοπής οπλισμού, απόθεση μπαζόν Κ.Λ.Π.) και ειδικά δραστηριοτήτων μεγάλης διάρκειας θα πρέπει να περιορίζονται στο χώρο κατασκευής σε άλλους κατάλληλα οργανωμένου χώρους μακριά από ευαίσθητες περιοχές ή αναπτύξεις.

Πιο κάτω δίνονται πρόσθετες εισηγήσεις για επιμέρους θέματα και οχλήσεις που προκύπτουν από το εργοτάξιο.

7.3.2 Θόρυβος

Οι αρνητικές επιπτώσεις από την ηχορύπανση θεωρούνται αναπόφευκτες, για μικρό χρονικό διάστημα στις κοντινότερες προς το έργο περιοχές. Παρόλα αυτά είναι δυνατό να μειωθούν οι επιπτώσεις αλλά και οι αντιδράσεις των επηρεαζόμενων εφαρμόζοντας τα παρακάτω μέτρα:

- Τήρηση του ωραρίου εργασίας
- Έγκαιρη ενημέρωση των επηρεαζόμενων για τις δραστηριότητες κατασκευής (επίδοση επιστολών, ανακοινώσεις στον τύπο, ανάρτηση πινακίδων).
- Ηχομόνωση των αντλιών και γεννητριών που θα χρησιμοποιούνται σε οικιστικές ή τουριστικές περιοχές ήτος ώστε να μην ξεπερνούν τα 70 dBA κατά τη διάρκεια της μέρας. Σε περίπτωση που θα χρησιμοποιηθούν αντλίες κατά τη διάρκεια της νύχτας κοντά σε κατοικίες τότε η ηχομόνωση θα πρέπει να επιτυγχάνει επίπεδα μέχρι 50 dBA.
- Αποφυγή αχρείαστων διακινήσεων βαρέων και άλλων οχημάτων και επιβολή ορίου ταχύτητας εντός του εργοταξιακού χώρου (π.χ. 15 km/ώρα).
- Χρήση εξοπλισμού χαμηλής στάθμης θορύβου (π.χ. ηλεκτρικού εξοπλισμού αντι εξοπλισμού εσωτερικής καύσης) και χρήση σιγαστήρων όπου αυτό ενδείκνυται ή χρήση ηχομοιοτικών κουβουκλιών (π.χ. στην περίπτωση γεννητριών).
- Εγκατάσταση των οχληρότερων δραστηριοτήτων του εργοταξίου όσο γίνεται πιο μακριά από κατοικίες.
- Προτείνεται επίσης η περίφραξη που θα εγκατασταθεί στην περιμετρική της περιοχής του έργου να είχε όσο το δυνατό καλύτερες ηχομοιοτικές ιδιότητες.
• Όλα τα μηχανήματα και γενικά ο εξοπλισμός που θα χρησιμοποιηθεί για τις εργασίες κατασκευής του έργου πρέπει να συμμορφώνεται με τον Κανονισμό 535/2003 «Ότι περί των Βασικών Απαιτήσεων (Εκπομπή Θορύβου στο Περιβάλλον από Εξοπλισμό προς Χρήση σε Εξωτερικούς Χώρους)». Κύρια απαιτητική του Κανονισμού είναι η μέτρηση του επιπέδου θορύβου που προέρχεται από τον εξοπλισμό και η τοποθέτηση σε αυτό σήμανσης, στην οποία να φαίνεται η “εγγυημένη στάθμη ακουστικής ισχύος”. Υπεύθυνος γι’ αυτό είναι, είτε ο κατασκευαστής είτε ο εξουσιοδοτημένος αντιπρόσωπος του.

7.3.3 Διαχείριση Αποβλήτων

7.3.3.1 Στερεά
Για τη συλλογή των αποβλήτων να τοποθετηθούν κλειστοί κάδοι απορριμμάτων στους χώρους του εργοταξίου, στους οποίους να υπάρχει εύκολη πρόσβαση από τους εργαζόμενους. Ο Εργολάβος θα πρέπει να περισυλλέγει σε τακτά χρονικά διαστήματα (τουλάχιστον μια φορά την μέρα) με δική του ευθύνη και να τα απορρίπτει σε εγκεκριμένο χώρο. Τα αστικού τύπου στερεά απορρίμματα των εργατών να συλλέγονται καθημερινά από το χώρο του εργοταξίου και να μεταφέρονται στους κάδους.

7.3.3.2 Μπάζα
Από το έργο ενδεχομένως να προκύψουν μικρές ποσότητες μπάζων. Τα μπάζα θα πρέπει να αποθηκεύονται σε κατάλληλα διαμορφωμένους χώρους και να σκεπάζονται ούτως ώστε να αποφεύγεται η διαρροή τους στο περιβάλλον. Θα πρέπει συνεπώς να προστατεύονται από τον αέρα και τη βροχή.

Ο εργολάβος του έργου θα πρέπει να εντοπίζει κατάλληλους χώρους όπου θα διαθέσει τα μπάζα που θα προκύπτουν καθ' όλη τη διάρκεια των κατασκευαστικών έργων. Οι θέσεις απόρριψης θα πρέπει να τύχουν της έγκρισης του Τμήματος Περιβάλλοντος.
7.3.3.3 Υγρά αστικού τύπου

Ο εργολάβος είναι υποχρεωμένος σύμφωνα με τον Κανονισμό 172/2002 «Ελάχιστες προδιαγραφές ασφαλείας και υγείας για τα εργοτάξια» να παρέχει στο προσωπικό τις απαραίτητες υγειονομικές διευκολύνσεις (Εικόνα 7).

Τοποθέτηση κινητών τουαλετών (χημικές τουαλέτες) θεωρείται ικανοποιητική για την αποφυγή ρύπανσης του περιβάλλοντος.

7.3.3.4 Επικίνδυνα απόβλητα

Τα επικίνδυνα απόβλητα χρήζουν ιδιαίτερης διαχείρισης και πρέπει να παραδίδονται σε αδειοδοτημένους συλλέκτες (Κατάλογος των αδειοδοτημένων εταιρειών μπορεί να...
εξασφαλιστεί από το Τμήμα Περιβάλλοντος ή σε αδειοδοτημένες εταιρείες διαχείρισης επικίνδυνων αποβλήτων. Η προσωρινή αποθήκευση αυτών των αποβλήτων μέχρι την απομάκρυνση τους από το χώρο του εργοταξίου πρέπει να γίνεται σε ειδικά δοχεία / περιέκτες, όπως πλαστικές δεξαμενές (παλετοδεξαμενές IBC 1000 λίτρων), πλαστικά βαρέλια (π.χ. drums των 25 λίτρων), μεταλλικές βαρέλες των 200 λίτρων.

Εικόνα 8: Παράδειγμα διαχείρισης επικίνδυνων αποβλήτων

7.3.4 Αέριες εκπομπές

Όπως έχει ήδη αναφερθεί, η δημιουργία σκόνης κατά τη διάρκεια των χωματουργικών και άλλων κατασκευαστικών έργων θεωρείται αναπόφευκτη. Μέτρα που μπορούν να ληφθούν για μείωση της σκόνης περιλαμβάνουν τα εξής:

- Προσωρινοί σωροί
- Τοποθέτηση σε κατάλληλα διαμορφωμένους χώρους, μακριά από ευαίσθητες χρήσεις
- Μετακίνηση σε μόνιμους χώρους το συντομότερο δυνατό
- Σκέπασμα δομικών υλικών
Δρόμοι πρόσβασης
- Διαβροχή των χωμάτινων δρόμων
- Επίσπευση τους το συντομότερο δυνατόν αν προγραμματίζονται για μόνιμες προσβάσεις.

Χωματουργικά έργα
- Επίσπευση έργων στο συντομότερο χρονικό διάστημα
- Αποφυγή των ξηρών μηνών του καλοκαιριού. Αποφυγή περιόδων με δυνατόύς ανέμους για την υλοποίηση των χωματουργικών έργων αν είναι δυνατό
- Διαβροχή

Χώροι μόνιμης απόρριψης
- Επιλογή χώρων μακριά από ευαίσθητες χρήσεις. Επίσης θα πρέπει να αποφεύγονται οι εκτάσεις των Αλυκών Λάρνακας.
- Σταθεροποίηση πρανών, διαμόρφωση των κατάλληλων κλίσεων
- Φύτευση ειδών ώστε να συνάδουν με το περιβάλλον.

Μεταφορές υλικών

7.3.5 Ασφάλεια
Κατά τη διάρκεια των κατασκευαστικών εργασιών, να τηρούνται οι νομοθετικές πρόνοιες για προστασία τόσο των εργαζομένων στην περιοχή όσο και τρίτων. Ο Πίνακας 25 παρουσιάζει τις κυριότερες πρόνοιες.

Επίσης θα υπάρχει συνεχής, 24ωρος περιορισμός εισόδου στον χώρο όπου θα εκτελούνται οι κατασκευαστικές εργασίες για την αποφυγή της εισόδου τρίτων ατόμων.
Πίνακας 25: Κίνδυνοι και Μέτρα Αντιμετώπισής τους κατά την Κατασκευή του Έργου.

<table>
<thead>
<tr>
<th>Κίνδυνοι</th>
<th>Περιγραφή</th>
<th>Μέτρα αντιμετώπισης (συνοπτικά)</th>
<th>Πιθανότητα πρόκλησης ατυχήματος</th>
</tr>
</thead>
</table>
| Ασφάλεια εργαζομένων και τρίτων προσώπων στο εργοτάξιο. | • Πτώση βαρέων αντικειμένων.
 • Κίνδυνοι από διακίνηση εργοταξιακών οχημάτων και λειτουργία μηχανημάτων
 • Εργασία πάνω σε ικρύματα.
 • Αγχομη αντικείμενα ή υλικά που φέρουν εξέχουσες καρφοβελόνες.
 • Ατυχήματα σε εκσκαφές και λάκκους.
 • Χρήση επικίνδυνων χημικών υλικών. | • Εφαρμογή στο τοποτάξιο των προνοιών της Κ.Δ.Π. 161173 και του περι Οικοδομικών και Εργον Μηχανικών κατασκευών κανονισμού (1973) που αφορά την ασφάλεια στον τόπο εργασίας.
 • Πρόνοιες σχετικά με την περιφραξή του χώρου εργασιών, την εξασφάλιση των εργασιών, την ανέγερση και αποσυναρμολόγηση ικριωμάτων, την στήριξη ικριωμάτων, την κρίση κιγκλιδωμάτων, η εναέρια διόδων κλιμάκων, την ευστάθεια γερανών, τη στήριξη ικριωμάτων, τη χρήση κιγκλιδωμάτων και τις εκσκαφές της Κ.Δ.Π. 161173 και του περι Οικοδομικών κατασκευών κανονισμού (1973).
 • Πρόνοιες σχετικά με την περιφραξή του χώρου εργασιών, την εξασφάλιση των προνοιών, την ανέγερση και αποσυναρμολόγηση ικριωμάτων, τη στήριξη ικριωμάτων, τη χρήση κιγκλιδωμάτων και τις εκσκαφές της Κ.Δ.Π. 161173 και του περι Οικοδομικών κατασκευών κανονισμού (1973). | Μικρή |
| Καθίζησεις εδαφών | Πρόκληση καθίζησεως σε γειτονικές οικοδομές, χώρο καθίζησης χρήσης προνοιών με ευστάθεια πρανών. | Μετρά αντιστήριξης πρανών | Μικρή |
| Μόλυνση εδαφών | Διαρροή υγρών καυσίμων στα έδαφα από ελικονά, και κατά τη λειτουργία μηχανημάτων και υλικά υγρά χημικών ή ατυχήματος | Τακτική συντήρηση μηχανημάτων.
 • Τοποθέτηση υλικών σε υποστατικά και συστήματα πρανών | Μικρή |

Επίσης, θα πρέπει να τοποθετηθεί επαρκής προειδοποιητική σηματοδότηση σε όλους τους χώρους όπου θα διεξάγονται τα έργα και όπου θα υπάρξουν διακοπές στο οδικό δίκτυο και στις εξόδους βαρέων οχημάτων.

7.4 Μέτρα Ελαχιστοποίησης των Επιπτώσεων κατά τη Λειτουργία

Όπως αναλύθηκε και πιο πάνω οι επιπτώσεις του έργου εντοπίζονται ως επί το πλείστον στην φάση κατασκευής του έργου και για αυτή την φάση διόνυσται και μέτρα ελαχιστοποίησης των επιπτώσεων όπου είναι δυνατό. Κατά την φάση λειτουργίας της
νέας γραμμής οι επιπτώσεις είναι μικρές και για αυτό λόγο τα μέτρα ελαχιστοποίησης που προτείνονται εδώ είναι περιορισμένα.

7.4.1 Αισθητική Ρύπανση

Ως μέσο μετρησμού των επιπτώσεων του έργου στην αισθητική του τοπίου θα πρέπει να γίνει προσεκτική χοροθέτηση των πυλώνων κατά μήκος του έργου ώστε να μην γίνει τοποθέτηση τους σε κορυφογραμμές ή σε άλλα σημεία ορατά από τους κατοίκους της περιοχής καθώς και από τον διερχόμενο πληθυσμό.
8 ΠΟΡΙΣΜΑΤΑ

Πιο κάτω παρουσιάζονται συνοπτικά οι θετικές και αρνητικές επιπτώσεις του έργου όπως προκύπτουν από την ανωτέρω ανάλυση και αξιολόγηση του έργου. Με βάση τα αποτελέσματα οι μελετητές θεωρούν ότι το έργο θα έχει συνολικά θετικά αποτελέσματα για την περιοχή μελέτης. Σε αυτό συμβάλλει φυσικά το γεγονός ότι το έργο υποβοηθά στον στόχο της ΑΗΚ για την καλύτερη και διανομή ηλεκτρικού ρεύματος στην Κυπριακή επικράτεια.

Παρόλα τα θετικά του έργου θα πρέπει να τονιστεί ότι η γραμμή μεταφοράς ηλεκτρικής ενέργειας θα επηρεάσει αρνητικά την χλωρίδα της περιοχής καθώς και την αισθητική του τοπίου. Συνεπώς, είναι κρίσιμο όπως όλα τα προτεινόμενα μέτρα υλοποιηθούν ενώ θα πρέπει να εφαρμόζεται αυστηρά το πρόγραμμα παρακολούθησης ούτως ώστε να εντοπίζονται και να αντιμετωπίζονται τα οποιαδήποτε προβλήματα έγκαιρα.
8.1 Συνοπτική Παρουσίαση των Επιπτώσεων κατά την κατασκευή

Πίνακας 26: Μήτρα επιπτώσεων (impact matrix) κατά την κατασκευή του έργου.

<table>
<thead>
<tr>
<th>ΕΙΔΟΣ</th>
<th>ΕΛΑΦΟΣ</th>
<th>ΑΕΡΑΣ</th>
<th>ΕΠΙΦΑΝΕΙΑΚΑ ΝΕΡΑ</th>
<th>ΥΠΟΓΕΙΑ ΝΕΡΑ</th>
<th>ΧΛΩΡΙΔΑ</th>
<th>ΠΑΝΙΔΑ</th>
<th>ΑΚΟΥΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ</th>
<th>ΧΡΗΣΗ ΓΗΣ</th>
<th>ΦΥΣΙΚΟΙ ΠΟΡΟΙ</th>
<th>ΚΟΙΝΩΝΙΚΟΟΙΚΟΝΟΜΙΚΑ</th>
<th>ΜΕΤΑΦΟΡΕΣ ΚΑΙ ΚΥΚΛΟΦΟΡΙΑ</th>
<th>ΑΝΘΡΩΠΙΝΗ ΥΓΕΙΑ</th>
<th>ΑΙΣΘΗΤΙΚΗ</th>
<th>ΤΟΥΡΙΣΜΟΣ ΑΝΑΨΥΧΗ</th>
<th>ΠΟΛΙΤΙΣΤΙΚΗ</th>
<th>ΚΑΡΠΟΝΟΜΙΑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΕΙΔΟΣ</td>
<td>X</td>
</tr>
<tr>
<td>ΜΕΓΕΘΟΣ</td>
<td></td>
</tr>
<tr>
<td>ΛΙΑΡΚΕΙΑ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΑΤΑΞΗ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΤΙΜΕΤΩΠΙΣΗ</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ΘΕΤΙΚΕΣ</th>
<th>ΟΥΑΣΕΙΤΕΣ</th>
<th>ΑΡΗΝΙΤΙΚΕΣ</th>
<th>ΑΣΦΕΝΕΙΣ</th>
<th>ΜΕΤΡΙΕΣ</th>
<th>ΕΣΧΗΡΕΣ</th>
<th>ΒΡΑΧΙΧΡΟΝΙΕΣ</th>
<th>ΜΑΚΡΟΧΡΟΝΙΕΣ</th>
<th>ΑΝΑΣΤΡΕΨΗΜΕΣ</th>
<th>ΑΝΑΣΤΡΕΨΗΜΕΣ</th>
<th>ΜΗ ΑΝΑΣΤΡΕΨΗΜΕΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΟΥΑΣΕΙΤΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΡΗΝΙΤΙΚΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΣΦΕΝΕΙΣ</td>
<td></td>
</tr>
<tr>
<td>ΜΕΤΡΙΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΕΣΧΗΡΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΒΡΑΧΙΧΡΟΝΙΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΜΑΚΡΟΧΡΟΝΙΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΜΗ ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΜΗ ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΑΣΤΡΕΨΗΜΕΣ</td>
<td></td>
</tr>
</tbody>
</table>
8.2 Συνοπτική Παρουσίαση των Επιπτώσεων κατά τη Λειτουργία

Πίνακας 27: Μήτρα επιπτώσεων κατά την λειτουργία (impact matrix)

<table>
<thead>
<tr>
<th>ΕΙΔΟΣ</th>
<th>ΕΛΑΦΟΣ</th>
<th>ΑΕΡΑΣ</th>
<th>ΕΠΙΦΑΝΕΙΑΚΑ ΝΕΡΑ</th>
<th>ΥΠΟΓΕΙΑ ΝΕΡΑ</th>
<th>ΧΛΩΡΙΔΑ</th>
<th>ΠΑΝΙΔΑ</th>
<th>ΑΚΟΥΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ</th>
<th>ΧΡΗΣΗ ΓΗΣ</th>
<th>ΦΥΣΙΚΟΙ ΠΟΡΟΙ</th>
<th>ΚΟΙΝΩΝΙΚΟΟΙΚΟΝΟΜΙΚΑ</th>
<th>ΜΕΤΑΦΟΡΕΣ ΚΑΙ ΚΥΚΛΟΦΟΡΙΑ</th>
<th>ΑΝΘΡΩΠΙΝΗ ΥΓΕΙΑ</th>
<th>ΑΙΣΘΗΤΙΚΗ</th>
<th>ΤΟΥΡΙΣΜΟΣ ΑΝΑΨΥΧΗ</th>
<th>ΠΟΛΙΤΙΣΤΙΚΗ</th>
<th>ΚΑΗΡΟΝΟΜΙΑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3 Συνοπτική Παρουσίαση των Επιπτώσεων από τη μη υλοποίηση του έργου

Πίνακας 28: Μήτρα επιπτώσεων (impact matrix) από τη μη υλοποίηση του έργου.

<table>
<thead>
<tr>
<th>ΕΙΔΟΣ</th>
<th>ΕΛΑΦΟΣ</th>
<th>ΑΕΡΑΣ</th>
<th>ΕΠΙΦΑΝΕΙΑΚΑ ΝΕΡΑ</th>
<th>ΥΠΟΓΕΙΑ ΝΕΡΑ</th>
<th>ΧΛΩΡΙΔΑ</th>
<th>ΠΑΝΙΔΑ</th>
<th>ΑΚΟΥΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ</th>
<th>ΧΡΗΣΗ ΓΗΣ</th>
<th>ΦΥΣΙΚΟΙ ΠΟΡΟΙ</th>
<th>ΚΟΙΝΩΝΙΚΟΟΙΚΟΝΟΜΙΚΑ</th>
<th>ΜΕΤΑΦΟΡΕΣ ΚΑΙ ΚΥΚΛΟΦΟΡΙΑ</th>
<th>ΑΝΘΡΩΠΙΝΗ ΥΓΕΙΑ</th>
<th>ΑΙΣΘΗΤΙΚΗ</th>
<th>ΤΟΥΡΙΣΜΟΣ ΑΝΑΨΥΧΗ</th>
<th>ΠΟΛΙΤΙΣΤΙΚΗ</th>
<th>ΚΑΙΡΟΝΟΜΙΑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΘΕΤΙΚΕΣ</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΟΥΔΕΤΕΡΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΡΝΗΤΙΚΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΕΙΧΥΡΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΒΡΑΧΥΧΡΟΝΙΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΜΑΚΡΟΧΡΟΝΙΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΑΣΤΡΕΨΙΜΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΜΗ ΑΝΑΣΤΡΕΨΙΜΕΣ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΑΤΑΞΗ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΤΙΜΕΤΩΠΙΣΗ</td>
<td></td>
</tr>
<tr>
<td>ΕΔΑΦΟΣ</td>
<td></td>
</tr>
<tr>
<td>ΧΑΕΡΑΣ</td>
<td></td>
</tr>
<tr>
<td>ΧΕΡΑ</td>
<td></td>
</tr>
<tr>
<td>ΥΠΟΓΕΙΑ ΝΕΡΑ</td>
<td></td>
</tr>
<tr>
<td>ΧΛΩΡΙΔΑ</td>
<td></td>
</tr>
<tr>
<td>ΠΑΝΙΔΑ</td>
<td></td>
</tr>
<tr>
<td>ΑΚΟΥΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ</td>
<td></td>
</tr>
<tr>
<td>ΧΡΗΣΗ ΓΗΣ</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΦΥΣΙΚΟΙ ΠΟΡΟΙ</td>
<td></td>
</tr>
<tr>
<td>ΚΟΙΝΩΝΙΚΟΟΙΚΟΝΟΜΙΚΑ</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΜΕΤΑΦΟΡΕΣ ΚΑΙ ΚΥΚΛΟΦΟΡΙΑ</td>
<td></td>
</tr>
<tr>
<td>ΑΝΘΡΩΠΙΝΗ ΥΓΕΙΑ</td>
<td></td>
</tr>
<tr>
<td>ΑΙΣΘΗΤΙΚΗ</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ΤΟΥΡΙΣΜΟΣ ΑΝΑΨΥΧΗ</td>
<td></td>
</tr>
<tr>
<td>ΠΟΛΙΤΙΣΤΙΚΗ</td>
<td></td>
</tr>
<tr>
<td>ΚΑΙΡΟΝΟΜΙΑ</td>
<td></td>
</tr>
</tbody>
</table>
8.4 Σύγκριση της Κατάστασης με το Έργο και Χωρίς το Έργο

Πίνακας 29: Μήτρα σύγκρισης επιπτώσεων μεταξύ μη υλοποίησης και υλοποίησης του έργου

<table>
<thead>
<tr>
<th>ΣΥΓΚΡΙΤΙΚΗ ΕΠΙΠΤΩΣΗ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΕΔΑΦΟΣ</td>
</tr>
<tr>
<td>ΑΕΡΑΣ</td>
</tr>
<tr>
<td>ΕΠΙΦΑΝΕΙΑΚΑ ΝΕΡΑ</td>
</tr>
<tr>
<td>ΥΠΟΓΕΙΑ ΝΕΡΑ</td>
</tr>
<tr>
<td>ΧΑΡΩΡΙΑ</td>
</tr>
<tr>
<td>ΠΑΝΙΔΑ</td>
</tr>
<tr>
<td>ΑΚΟΥΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ</td>
</tr>
<tr>
<td>ΧΡΗΣΗ ΓΗΣ</td>
</tr>
<tr>
<td>ΦΥΣΙΚΟΙ ΠΟΡΟΙ</td>
</tr>
<tr>
<td>ΚΟΙΝΩΝΙΚΟΙΚΟΝΟΜΙΚΑ</td>
</tr>
<tr>
<td>ΜΕΤΑΦΟΡΕΣ ΚΑΙ ΟΔΙΚΟ ΔΙΚΤΥΟ</td>
</tr>
<tr>
<td>ΑΝΘΡΩΠΙΝΗ ΥΓΕΙΑ</td>
</tr>
<tr>
<td>ΑΙΣΘΗΤΙΚΗ</td>
</tr>
<tr>
<td>ΤΟΥΡΙΣΜΟΣ ΑΝΑΨΥΧΗ</td>
</tr>
<tr>
<td>ΠΟΛΙΤΙΣΤΙΚΗ ΚΛΗΡΩΝΟΜΙΑ</td>
</tr>
</tbody>
</table>

Επεξήγηση συμβόλων:
- : Καμία Επίπτωση
- : Αρνητική Επίπτωση
+ : Θετική Επίπτωση
9 ΠΡΟΓΡΑΜΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ / ΔΙΑΧΕΙΡΙΣΗ

9.1 Εισαγωγή

Το πιο κάτω Σχέδιο επίβλεψης και παρακολούθησης στοχεύει αρχικά στη διασφάλιση της υλοποίησης των μέτρων ελαχιστοποίησης και προστασίας του περιβάλλοντος κατά την κατασκευή. Επιπρόσθετα, στοχεύει στην μετέπειτα παρακολούθηση της δραστηριότητας που θα αναπτυχθεί στην περιοχή του αναδασμού και των επιπτώσεών τους στο περιβάλλον. Το πρόγραμμα παρακολούθησης έχει στόχο να πληροφορήσει τον διαχειριστή του έργου καθώς και άλλα αρμόδια τμήματα όστος ώστε να μπορεί να τεκμηριώνεται η υλοποίηση των μέτρων και η επάρκειά τους να πετύχουν τους στόχους που έχουν τεθεί. Όπου εντοπίζονται προβλήματα θα πρέπει να λαμβάνονται οι κατάλληλες ενέργειες.

9.2 Παρακολούθηση υλοποίησης των περιβαλλοντικών μέτρων

Η παρακολούθηση στοχεύει αρχικά στη διασφάλιση της υλοποίησης των προτάσεων της ΜΕΕΠ που αφορούν στην ενσωμάτωση μέτρων προστασίας του περιβάλλοντος. Καταρχήν θα διασφαλίσει ότι οι όροι εντολής για την κατασκευή ενσωματώνουν τα μέτρα περιβαλλοντικής προστασίας και ότι προδιαγράφονται τα κατάλληλα τεχνικά χαρακτηριστικά τους. Όποια μέτρα δεν υλοποιούνται θα πρέπει να συνοδεύονται με κατάλληλη τεκμηρίωση.

Τα μέτρα που αφορούν στην εγκατάσταση υποδομής συνοψίζονται πιο κάτω.
• Αποφυγή επέμβασης / υποβάθμισης στις περιοχές που έχουν καθοριστεί ως σημαντικές για το περιβάλλον, το τοπίο ή την πολιτιστική κληρονομιά από την κατασκευή / αναβάθμιση δρόμων και τον διαχωρισμό οικοπέδων.
• Σχεδιασμός των δρόμων έτσι που 1) να ακολουθεί υψηλότερους δρόμους και το τοπογραφικό ανάγλυφο στο μέγιστο δυνατό βαθμό και 2) να αποφεύγονται μεγάλες κλίμακες εκσκαφές.
9.3 Πρόγραμμα παρακολούθησης στη φάση κατασκευής

Οι παράμετροι παρακολούθησης στη φάση κατασκευής του έργου περιγράφονται συνοπτικά πιο κάτω.

9.3.1 Οργάνωση Εργοταξίου

Επί καθημερινής βάσης ο επιβλέπων μηχανικός του έργου, ή αντιπρόσωπος του, θα πρέπει να επιβλέπει την οργάνωση και τακτοποίηση του εργοταξίου καθώς και την τήρηση των προτεινόμενων λειτουργικών μέτρων.

Η παρακολούθηση θα περιλαμβάνει:
- Μέτρα ασφάλειας, περιφράξεις, σημάνσεις,
- Μέτρα περιορισμού της διαρροής ρύπων, υλικών και απορριμμάτων στον αέρα, το νερό και το εδάφος,
- Καταλληλότητα και ορθή χρήση των χώρων αποθήκευσης υλικών, μπάζων και απορριμμάτων.

9.3.2 Απόβλητα

Επί καθημερινής βάσης ο επιβλέπων μηχανικός του έργου, ή αντιπρόσωπος του, θα πρέπει να επιβλέπει τη σωστή συλλογή, προσωρινή αποθήκευση, μεταφορά και τελική απόθεση των στερεών και υγρών αποβλήτων, ιδιαίτερα των μπαζών, άχρηστων ασφαλτικών υλικών και χρησιμοποιημένων λιπαντικών εξουσιοδοτούν.

Συγκεκριμένα θα ελέγχονται τα εξής:
- Προετοιμασία κατάλληλων χώρων προσωρινής αποθήκευσης και εντοπισμός κατάλληλων χώρων τελικής απόθεσης,
- Αποθήκευση και απόθεση μόνο στους επιλεγμένους/εγκεκριμένους χώρους,
- Λήψη μέτρων περιορισμού διαρροών,
- Αποφυγή περιβαλλοντικά ευαίσθητων χώρων,
- Σήμανση,
- Λήψη μέτρων ασφάλειας,
• Διαμόρφωση τελικών χώρων απόθεσης.

9.3.3 Αέριες εκπομπές

Κατά την περίοδο της κατασκευής θα πρέπει να παρακολουθούνται τα επίπεδα αναπνεύσιμης σκόνης όποτε διεξάγονται έργα κοντά σε κατοικημένες περιοχές. Οι μετρήσεις θα πρέπει να διεξάγονται σύμφωνα με ένα από τα ακόλουθα πρότυπα, VDI 2066, ISO 9096 και CYS EN 13284-1:2002.

Επίσης, θα πρέπει να επιτηρείται η εφαρμογή των μέτρων ελαχιστοποίησης, δηλαδή η ικανοποιητική κατάβρεξη και η τήρηση των προτεινόμενων διαδρομών κυκλοφορίας οχημάτων που σχετίζονται με τα κατασκευαστικά έργα.

Πίνακας 30: Δείκτης παρακολούθησης αιωρούμενης σκόνης

<table>
<thead>
<tr>
<th>ΔΕΙΚΤΗΣ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ</th>
<th>ΣΥΧΝΟΤΗΤΑ ΜΕΤΡΗΣΗΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM₁₀</td>
<td>Μία 24ώρη μέτρηση με την έναρξη χωματουργικών εργασιών που γίνονται σε απόσταση λιγότερη των 150 μέτρων από οικιστικές αναπτύξεις.</td>
</tr>
</tbody>
</table>

Πίνακας 31: Δείκτης παρακολούθησης θορύβου

<table>
<thead>
<tr>
<th>ΔΕΙΚΤΗΣ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ</th>
<th>ΣΥΧΝΟΤΗΤΑ ΜΕΤΡΗΣΗΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>den</sub>, L<sub>day</sub>, L<sub>night</sub></td>
<td>Μία 24ώρη μέτρηση στην έναρξη θορυβιοδόν εργασιών που θα γίνονται σε απόσταση λιγότερη των 50 μέτρων από οικιστικές αναπτύξεις και όποτε υπάρχουν παράπονα από τους περιοίκους.</td>
</tr>
</tbody>
</table>

9.3.4 Θόρυβος

Η συχνότητα παρακολούθησης των επιπέδων θορύβου δύναται να διαφοροποιείται σε περίπτωση ύπαρξης δικαιολογημένων παράπονων από περιοίκους.

Οι μετρήσεις θα αφορούν στον δείκτη L_{den} και να διεξάγονται σύμφωνα με το πρότυπο ISO1996.

9.3.5 Βιολογικό περιβάλλον

Κατά την φάση κατασκευής του έργου οι πιο κάτω παράμετροι σε σχέση με το βιολογικό περιβάλλον της περιοχής θα πρέπει να παρακολουθούνται.
• Φυτουγειονομική κατάσταση των περιοχών εκείνων που θεωρούνται σημαντικές για την χλωρίδα της περιοχής.

Πίνακας 32: Δείκτης παρακολούθησης Χλωρίδας

<table>
<thead>
<tr>
<th>ΔΕΙΚΤΗΣ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ</th>
<th>ΣΥΧΝΟΤΗΤΑ ΜΕΤΡΗΣΗΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φυτον (Τύπος, Αριθμός Πληθυσμού, Φυτουγειονομική κατάσταση)</td>
<td>Μία Εβδομαδιαία μέτρηση με στην έναρξη των εργασιών.</td>
</tr>
</tbody>
</table>

• Πληθυσμός πτηνών στην περιοχή μελέτης.

Πίνακας 33: Δείκτης παρακολούθησης Πανίδας

<table>
<thead>
<tr>
<th>ΔΕΙΚΤΗΣ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ</th>
<th>ΣΥΧΝΟΤΗΤΑ ΜΕΤΡΗΣΗΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ζώων (Πτηνών, Θηλαστικών, Ερπετών)-(Τύπος, Αριθμός Πληθυσμού, Φυσική κατάσταση, Φωλεοποίηση)</td>
<td>Μία Εβδομαδιαία μέτρηση με στην έναρξη των εργασιών.</td>
</tr>
</tbody>
</table>

9.3.6 Υδρολογικές συνθήκες

• Τήρηση μέτρων προστασίας από τη διάβρωση,
• Διαρροή ή απόθεση υλικών και μπαζών σε μη εγκεκριμένους χώρους,
• Επεμβάσεις σε άξονες αποστράγγισης.

Έκτακτες μετρήσεις αιωρούμενων σωματιδίων όταν διεξάγονται χωματουργικές εργασίες σε άξονες αποστράγγισης.

9.4 Πρόγραμμα παρακολούθησης στη Φάση Λειτουργίας

Κατά τη λειτουργία της νέας γραμμής μεταφοράς συνίσταται πρόγραμμα παρακολούθησης του περιβάλλοντος μόνο για την περίπτωση της πτηνοπανίδας της περιοχής.
9.4.1 Βιολογικό περιβάλλον

- Πληθυσμός πτηνών στην περιοχή μελέτης.

Πίνακας 34: Δείκτης παρακολούθησης Πανίδας

<table>
<thead>
<tr>
<th>ΔΕΙΚΤΗΣ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ</th>
<th>ΣΥΧΝΟΤΗΤΑ ΜΕΤΡΗΣΗΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ζώον (Πτηνών, Θηλαστικών, Ερπετών)-(Τύπος, Αριθμός Πληθυσμού, Φυσική κατάσταση, Φοιλεοποίηση)</td>
<td>Μία Εξαμηνιαία μέτρηση με στην έναρξη των εργασιών.</td>
</tr>
</tbody>
</table>
10 ΒΙΒΛΙΟΓΡΑΦΙΑ

1. Απογραφή Πληθυσμού 2001, Στατιστική Υπηρεσία
2. ΥΠΟΥΡΓΕΙΟ ΓΕΩΡΓΙΑΣ, ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ, ΟΔΗΓΙΑ ΠΛΑΙΣΙΟ ΓΙΑ ΤΑ ΝΕΡΑ (2000/60/ΕΚ), Συνοπτική Έκθεση για την Ε.Ε., Άρθρα 5 &6
3. Δήλωση Πολιτικής για την Υπαίθρο
4. Αντωνίου, Α. & Κωνσταντινίδης, Ρ. 1995. Εμείς και τα ερπετά. Υπουργείο Γεωργίας, Φυσικών Πόρων και Περιβάλλοντος, Υπηρεσία Περιβάλλοντος.
5. Αντωνίου, Α. & Κωνσταντινίδης, Ρ. 1996. Οι σαύρες της Κύπρου. Υπουργείο Γεωργίας, Φυσικών Πόρων και Περιβάλλοντος, Υπηρεσία Περιβάλλοντος.
11. Δημητρόπουλος Α & Ιωανίδης Γ, 2002, Τα ερπετά της Ελλάδας και της Κύπρου, Μουσείο Παλαιολόγοι Φυσικής Ιστορίας, Αθήνα 2002
13. EDDIE, J, 2000: Butterflies of Cyprus 1998 (Records of a year’s sightings) - The Amateur Entomologists’ Society, Pamphlet No.15
23. Μακρής, Χρ. 2002. Οι πεταλούδες της Κύπρου. Πολιτιστικό Ίδρυμα Τραπέζης Κύπρου.
11 ΠΑΡΑΡΤΗΜΑΤΑ
ΠΑΡΑΡΤΗΜΑ 1. Χάρτες