ΕΠΙΤΕΛΙΚΗ ΠΕΡΙΛΗΨΗ

Η παρούσα Μελέτη Εκτίμησης των Επιπτώσεων στο Περιβάλλον αφορά τη δημιουργία σταθμού βιολογικής επεξεργασίας των χοιροτροφικών λυμάτων που παράγονται από τις επιχειρηματικές δραστηριότητες της εταιρείας ΝΙΚΟΣ ΠΙΜΠΟΣ ΑΤΑ.

Η εν λόγω χοιροτροφική μονάδα βρίσκεται στην κοινότητα Ορούντας, επαρχία Λευκωσίας. Το έργο πρόκειται να ανεγερθεί εντός του λογισμικού γης που συνορεύει με τις εγκαταστάσεις του χοιροστασίου της Εταιρείας, εντός της Τεχνοτροφικής Ζώνης Γ3, της κοινότητας Ορούντας, τοποθετίας «Πλάτας». Οι πλησιέστεροι οικισμοί στην υπό μελέτη περιοχή είναι ο Ορούντας σε απόσταση περίπου 1,5 χλμ. βόρεια, 5 χλμ. ανατολικά το Μένοικο και 4 χλμ. περίπου βόρεια η Περιστερώνα. Στην ίδια περιοχή (Ορούντα, Μένοικο και Ακάκι) λειτουργούν εκτός του υπό μελέτη χοιροστασίου αρκετές κτηνοτροφικές μονάδες.

Η πρόσβαση στο χοιροστάσιο και κατ’επέκταση στο υπό μελέτη τεμάχιο εξασφαλίζεται από αγροτικό δρόμο.

Η κτηνοτροφική μονάδα της εταιρείας ΝΙΚΟΣ ΠΙΜΠΟΣ ΑΤΑ υπόκειται στις πρόνοιες της νομοθεσίας για την Ολοκληρωμένη Πρόληψη και Έλεγχο της Ρύπανσης N 56(I)/2003 και το προτεινόμενο έργο σκοπό έχει την εναρμόνιση της λειτουργίας του χοιροστασίου με την νομοθεσία. Το σύστημα μηχανικού διαχωρισμού που είναι σε λειτουργία δεν είναι ικανό να καλύψει τις απαιτήσεις της νομοθεσίας, καθώς δεν αποτελεί βέλτιστη διαθέσιμη τεχνική, και ως εκ τούτου πρέπει να αντικατασταθεί.

Οι σημαντικότερες Βέλτιστες Διαθέσιμες Τεχνικές βιολογικής επεξεργασίας λυμάτων είναι: α) Η αναερόβια χώνευση, β) Η επεξεργασία ενεργού ύλους, γ) Η κομποστοποίηση. Στο προτεινόμενο έργο θα χρησιμοποιηθεί συνδυασμός όλων των παραπάνω τεχνικών βιολογικής επεξεργασίας ώστε να εξασφαλίσει το βέλτιστο αποτέλεσμα τόσο σε επίπεδο περιβαλλοντικό όσο και τεχνοοικονομικό.

Η κομποστοποίηση αποτελεί πολύ αποτελεσματική τεχνική για την μείωση του βιολογικού φορτίου του στερεού μέρους των αποβλήτων, αλλά από μόνη της δεν αντιμετωπίζει το πρόβλημα της διάθεσης του υγρού αποβλήτου. Τα χορολύματα βρίσκονται σε υγρή μορφή, με χαμηλό ποσοστό στερεών (~6%) και επομένως η κομποστοποίηση μπορεί να χρησιμοποιηθεί μόνο επικουρικά. Οι επικρατούσες μέθοδοι επεξεργασίας είναι η Αναεροβία και η Ενεργούς υλώς. Και οι δύο μέθοδοι αποτελούν αξιόπιστες τεχνικές, ικανές να εξαλείψουν σε σημαντικό βαθμό τις αρνητικές
περιβαλλοντικές επιπτώσεις της διάθεσης των χοιρολύματος. Το υπό μελέτη έργο θα συνδυάζει και
tις δύο τεχνικές, οδηγώντας τα χοιρολύματα σε παράλληλη αερόβια και αναερόβια επεξεργασία, επιτυγχάνοντας τη μέγιστη μείωση οργανικού και ανόργανου φορτίου.

Σημαντική καινοτομία του έργου είναι η τεταρτοβάθμια επεξεργασία των λυμάτων σε μονάδα αντιστροφής όσμωσης και η παραγωγή νερού παντελώς απαλλαγμένου από οποιεσδήποτε προσμίζεις. Το τελικό νερό μπορεί να χρησιμοποιηθεί για σκοπούς έκπληξης εντός του χοιροστασίου και για άρδευση καλλιεργειών. Σημαντική περιβαλλοντική παράμετρος στην επεξεργασία των χοιρολύματος είναι η υψηλή αλατότητα που εμφανίζουν αυτά τα λύματα. Το γεγονός αυτό καθιστά δύσκολη την διάθεση του τελικού επεξεργασμένου νερού για αρδευτική χρήση καθώς πρέπει να τηρούνται οι κανόνες Ορθής Γεωργικής Πρακτικής, όπου πρέπει να πληροί άρια ως προς την αλμυρότητα του νερού. Η μονάδα αντιστροφής όσμωσης επιλέει αυτό το πρόβλημα απαλλάσσοντας το παραγόμενο νερό από τα διαλυμένα άλατα και οποιεσδήποτε άλλες προσμίζεις.

Τα χοιρολύματα που προκύπτουν από την λειτουργία του χοιροστασίου ανέρχονται στους 60 τόνους ημερήσιως. Τα προϊόντα των διαφόρων σταδίων επεξεργασίας είναι ως εξής: 1) Περίπου 1,500 κιλά βιοαέριου ημερήσιως από την αναερόβια χώνευση, 2) 1,4 τόνοι ημερήσιως στερεού υπόλειμμα προς κομποστοποίηση (20% υγρασία), 3) 45 τόνοι νερού ημερήσιως, πλήρως απαλλαγμένο από προσμίζεις εξέρχεται της μονάδας αντιστροφής όσμωσης, 3) 11,5 τόνοι συμπύκνωμα αλάτων εξέρχεται της μονάδας αντιστροφής όσμωσης και οδηγείται σε σεξιμενή εξάτμιση.

Κατά την διεργασία της Αναερόβιας χώνευσης παράγεται βιοαέριο με σημαντικό ποσοστό μεθανίου (~60%), το οποίο καίγεται σε γεννήτρια συμπαραγωγής ηλεκτρικής ενέργειας και θερμότητας. Η παραγωγή ηλεκτρικής ενέργειας ανέρχεται στα 135kW, ενώ η θερμική ενέργεια υπολογίζεται στα 190 kW. Η ηλεκτρική ενέργεια θα χρησιμοποιείται για την κάλυψη των ιδίων αναγκών λειτουργίας του σταθμού και επίσης θα καλύπτει το μεγαλύτερο μέρος της κατανάλωσης ηλεκτρισμού από το χοιροστάσιο. Η θερμική ενέργεια επίσης θα χρησιμοποιείται για την κάλυψη των θερμικών αναγκών του χοιροστασίου, αντικαθιστώντας την κάση πετρελαίου. Το βιοαέριο προέρχεται από τη βιομάζα και κατα ρισμό εντάσσεται στην κατηγορία των Ανανεώσιμων Πηγών Ενέργειας. Επομένως η χρήση του δεν προσμετράται στο θετικό ισοζύγιο θερμοκηπιακών αερίων (CO2).
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

1 ΕΙΣΑΓΩΓΗ ... 6
 1.1 Σκοπός της πρωτεινομένης ανάπτυξης .. 6
 1.2 Χωροθέτηση της πρωτεινομένης ανάπτυξης .. 7
 1.3 Περιγραφή πρωτεινομένης ανάπτυξης ... 8
 1.4 Σκοπός της Μελέτης Εκτίμησης Επιπτώσεων στο Περιβάλλον .. 8
2 ΣΚΟΠΟΣ ΤΟΥ ΕΡΓΟΥ ... 9
 2.1 Εισαγωγή .. 9
 2.2 Στόχοι του έργου ... 9
3 ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΤΟΥ ΥΦΙΣΤΑΜΕΝΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ 11
 3.1 Εισαγωγή .. 11
 3.2 Τοπογραφία και Εδαφολογία .. 12
 3.3 Γεωλογικά και Υδρολογικά Χαρακτηριστικά Περιοχής ... 13
 3.4 Μετεωρολογικά Δεδομένα ... 15
 3.5 Τοπογραφία Περιοχής ... 16
 3.6 Ποιότητα της Ατμόσφαιρας ... 17
 3.7 Πληθυσμικά και Δημογραφικά Δεδομένα .. 20
 3.8 Πολεοδομικά Δεδομένα .. 21
 3.9 Χωροταξικά Δεδομένα ... 21
 3.10 Βιολογικό Περιβάλλον ... 22
 3.11 Στάσεις και απόψεις των κατοίκων της περιοχής της μελέτης 24
4 ΔΙΑΘΕΣΙΜΕΣ ΤΕΧΝΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΑΠΟΒΛΗΤΩΝ .. 25
 4.1 Τεχνικές Βιολογικής Επεξεργασίας ... 25
 4.1.1 Αναεροβία Χώνευση ... 25
 4.1.2 Αεροβία Βιολογική Επεξεργασία - Λειτουργία .. 29
 4.1.3 Συνδυασμός Αναεροβίας Επεξεργασίας και Αεροβίας Λειτουργία 31
 4.1.4 Αεροβία Βιολογική Επεξεργασία – Δραστική Λάσπη .. 32
 4.1.5 Σύγκριση Αεροβίας και Αναεροβίας Επεξεργασίας .. 35
 4.2 Επιλογή Μεθόδου Βιολογικής Επεξεργασίας ... 37
 4.3 Τύποι Αντιδραστήρων .. 37
 4.3.1 Αντιδραστήρας CSTR (Continuously Stirred Tank Reactor) 37
 4.3.2 Αντιδραστήρας UASB (Upflow Anaerobic Sludge Blanket) 39
 4.3.3 Αντιδραστήρας Plug Flow ... 41
 4.4 Αποτέλεσμα ... 42
4.4.1 Μέθοδοι Αποτέρωσης ... 44
4.5 Χρήση Ανεπέξεργάστης ύλης ως Εδαφοβελτιωτικό 45
5 ΠΕΡΙΓΡΑΦΗ ΕΡΓΟΥ ... 47
 5.1 Περιγραφή Επιλεγμένης Μεθόδου ... 47
 5.2 Συνοπτική Τεχνική Περιγραφή Έργου 48
 5.3 Χαρακτηριστικά Λιμάτων προς Επεξεργασία και Κανονισμοί ... 50
 5.4 Χρονοδιάγραμμα Κατασκευής του Έργου 51
 5.5 Διαστασιολόγηση Εξοπλισμού και Δεξαμενών 52
 5.5.1 Δεξαμενή Εξισορρόπησης .. 52
 5.5.2 Δεξαμενή DAF .. 53
 5.5.3 Αναερόβιος Αντιδραστήρας .. 55
 5.5.4 Κοψιλόπρεσα Υγρών / Στερεών 57
 5.5.5 Γεννήτρια Συμπαραγωγής Ηλεκτρικής και Θερμικής Ενέργειας... 59
 5.5.6 Δεξαμενή Σταθεροποίησης - Αποντροποίησης 60
 5.5.7 Δεξαμενή Αερισμού .. 61
 5.5.8 Δεξαμενής Καθίζησης ... 63
 5.5.9 Δεξαμενή MBR .. 65
 5.5.10 Δεξαμενή Χλωρίωσης .. 68
 5.5.11 Αντίστροφη Ωσμοσία ... 68
 5.5.12 Δεξαμενές Νερού .. 69
6 ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ 71
 6.1 Κυκλοφοριακά Δεδομένα .. 71
 6.2 Σύνδεση με Οδικό Δίκτυο .. 71
 6.3 Είδη Υλικών ... 71
 6.4 Θαρυβός και Δονήσεις ... 72
 6.5 Ανάγκες σε Νερό ... 73
 6.6 Ανάγκες σε Ενέργεια ... 74
 6.7 Αέρια Απόβλητα ... 74
 6.8 Υγρά Απόβλητα ... 76
 6.9 Στερεά Απόβλητα ... 77
7 ΕΚΤΙΜΗΣΗ ΤΩΝ ΕΠΙΠΤΩΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ 79
 7.1 Εισαγωγή ... 79
 7.2 Φάση Κατασκευής του Έργου .. 81
 7.3 Φάση Λειτουργίας του Έργου 85
 7.4 Φάση Αποξήλωσης του Έργου 91
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>Επιτώσεις Μη Κατασκευής Του Έργου</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>ΕΙΣΗΓΗΣΕΙΣ ΚΑΙ ΠΟΡΙΣΜΑΤΑ</td>
<td>96</td>
</tr>
<tr>
<td>8.1</td>
<td>Εισαγωγή</td>
<td>96</td>
</tr>
<tr>
<td>8.2</td>
<td>Περιβαλλοντική Βιοσιμότητα και Συμβατικότητα του Προτεινόμενου Έργου</td>
<td>97</td>
</tr>
<tr>
<td>8.3</td>
<td>Μέτρα Αντιμετώπισης των Επιτώσεων</td>
<td>98</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Μέτρα κατά της Ηχορύπανσης</td>
<td>98</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Αντιθορυβικά Μέτρα κατά την Κατασκευή</td>
<td>98</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Μέτρα Τοπιοτέχνησης</td>
<td>99</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Μέτρα Διαχείρισης Αέριων Αποβλήτων</td>
<td>99</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Μέτρα για τη Διαχείριση του Εργοταξίου</td>
<td>100</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Μέτρα Διαχείρισης των Υγρών και Στερεών Αποβλήτων</td>
<td>100</td>
</tr>
<tr>
<td>8.3.7</td>
<td>Μέτρα Ασφάλειας και Υγείας Εργαζομένων</td>
<td>101</td>
</tr>
<tr>
<td>8</td>
<td>ΜΕΤΡΑ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΤΩΝ ΕΠΙΤΩΣΕΩΝ</td>
<td>96</td>
</tr>
<tr>
<td>9</td>
<td>ΒΙΒΛΙΟΓΡΑΦΙΑ</td>
<td>102</td>
</tr>
<tr>
<td>10</td>
<td>ΠΑΡΑΡΤΗΜΑΤΑ</td>
<td>103</td>
</tr>
</tbody>
</table>
1 ΕΙΣΑΓΩΓΗ

1.1 Σκοπός της προτεινόμενης ανάπτυξης

Η παρούσα Μελέτη Εκτίμησης των Επιπτώσεων στο Περιβάλλον αφορά την κατασκευή και λειτουργία σταθμού αναερόβιας και αερόβιας επεξεργασίας των αποβλήτων του χοιροστασίου ΝΙΚΟΣ ΠΙΜΠΟΣ ΛΤΔ. Το υφιστάμενο χοιροστάσιο έχει δυναμικότητα 900 χιορομητέρων και είναι εγκατεστημένο στην Γεωργική Ζώη Γ3 της κοινότητας Ορούντας (Φ/Σχ: 29/28), επαρχία Λευκωσίας και τοποθεσία «Πλάτσα». Η κατασκευή του σταθμού επεξεργασίας των χοιρολιματών θα γίνει σε τεμάχιο γης που συνορεύει με τις εγκαταστάσεις του χοιροστασίου, με αριθμό 270.

Με την κατασκευή του σταθμού αναερόβιας και αερόβιας επεξεργασίας η εταιρεία στοχεύει στα πιο κάτω θετικά αποτελέσματα:

- Στην διαχείριση των αποβλήτων που παράγονται από τις δραστηριότητες της εταιρίας ΝΙΚΟΣ ΠΙΜΠΟΣ ΛΤΔ, με Βέλτιστες Διαθέσιμες Τεχνικές και κατά συνέπεια εναρμόνιση με την νομοθεσία.
- Στη μείωση της οσμορύπανσης και της εκπομπής θερμοκηπιακών αερίων.
- Στην ελαχιστοποίηση της ρύπανσης στα νερά και εδάφη της περιοχής.
- Στην βελτίωση της βιωσιμότητας της εταιρείας, ήτοι με την ενεργειακή εκμετάλλευση των αποβλήτων, τα οποία αποτελούν βιομάζα.
- Στην αξιοποίηση των ανανεώσιμων πηγών ενέργειας (χρήση βιομάζας), στην βελτίωση της περιβαλλοντικής εικόνας και κατά συνέπεια της κοινωνικής αποδοχής του χοιροστασίου στην περιοχή.

Η μονάδα αναερόβιας και αερόβιας επεξεργασίας θα παράγει βιοαέριο, το οποίο θα αξιοποιείται για την παραγωγή ηλεκτρικής και θερμικής ενέργειας, καθώς και οργανικού λιπάσματος (compost) που θα χρησιμοποιείται ως εδαφοβελτιωτικό. Η μελέτη πραγματοποιείται σύμφωνα με τις πρόνοιες του Νόμου N.140(I)/2005 περί Εκτίμησης των Επιπτώσεων στο Περιβάλλον από Ορισμένα Έργα Νόμο. Σύμφωνα με το άρθρο 9 του Νόμου N 140(I)/2005 ο κύριος του έργου υποβάλλεται ως αναπόσπαστο μέρος της αίτησης της Μελέτη Εκτίμησης Επιπτώσεων στο Περιβάλλον, αν το έργο εμπίπτει σε κατηγορία του Παραρτήματος I. Το υπό μελέτη έργο εμπίπτει στο Παράρτημα I, αφού θεωρείται εγκατάσταση επεξεργασίας ή / και τελική διάθεσης ζωικών αποβλήτων.
Για την εκτίμηση των περιβαλλοντικών επιπτώσεων στο περιβάλλον από τις εργασίες κατασκευής του σταθμού επεξεργασίας λυμάτων, λαμβάνονται υπόψη οι σημαντικότεροι περιβαλλοντικοί παράμετροι που δύναται να επηρεαστούν (κυκλοφορία, θόρυβος, εκπομπή σκόνης, κλπ.), περιγράφονται οι πιθανές επιπτώσεις που οι εργασίες κατασκευής θα έχουν στις παραμέτρους αυτές και στη συνέχεια γίνεται αξιολόγηση / βαθμολόγηση των επιπτώσεων αυτών στο περιβάλλον.

1.2 Χωροθέτηση της προτεινόμενης ανάπτυξης

Το προτεινόμενο έργο θα ανεγερθεί σε ιδιόκτητο τεμάχιο το οποίο συνορεύει με το υφιστάμενο χοιροστάσιο της εταιρείας. Το τεμάχιο (αριθμός 270, αριθμός Χωρομετρικού Σχεδίου Φ/Σχ: 29/28), στο οποίο προτείνεται να κατασκευαστεί το υπό μελέτη έργο, βρίσκεται στην Γεωργική Ζώνη Ζ3 της κοινότητας Ορούντας, της επαρχίας Λευκωσίας, στην τοποθεσία ‘Πλάτσα’. Η συνολική επιφάνεια του τεμαχίου είναι 14.716 τ.μ. Τα υποστατικά του χοιροστασίου είναι εγκατεστημένα στο τεμάχιο 264, στο ίδιο φύλλο σχεδίου.

Τα εν λόγω τεμάχια φαίνονται στο επισυναπτόμενο σχέδιο του Παραρτήματος Α & Β.

Εικόνα 1-1. Χάρτης περιοχής μελέτης.
Η προτεινόμενη ανάπτυξη βρίσκεται σε απόσταση 1 χλμ. περίπου μακριά από τις πρώτες διάσπαρτες κατοικίες της Οροπέδιος. Η πρόσβαση στο χοιροστάσιο και κατ’ επέκταση στο υπό μελέτη τεμάχιο επιτυγχάνεται μέσω επαρχιακού δρόμου.

1.3 Περιγραφή προτεινόμενης ανάπτυξης

Οι συνιστώσες μονάδες του σταθμού είναι οι πιο κάτω:

- Αναερόβιος αντιδραστήρας επεξεργασίας των χοιρολυμάτων.
- Δεξαμενές αερόβιας επεξεργασίας των χοιρολυμάτων
- Ηλεκτρομηχανολογικός εξοπλισμός

Η μονάδα επεξεργασίας έχει διαστασιολογηθεί και σχεδιαστεί με σκοπό να διαχειρίζεται περίπου 60 τόνους χοιρολυμάτων χρεωστικώς που παράγονται από το χοιροστάσιο. Εκτιμάται ότι θα παράγονται καθημερινά από το σταθμό 1.500 m³ εκμεταλλεύσιμοι βιοαερίου, δηλαδή 135 ηλεκτρικές κιλοβατόρες και 190 θερμικές κιλοβατόρες χημερισίου.

1.4 Σκοπός της Μελέτης Εκτίμησης Επιπτώσεων στο Περιβάλλον

Σύμφωνα με τον περί Εκτίμησης των Επιπτώσεων στο Περιβάλλον από Ορισμένα Έργα Νόμο (Αρ. 140(1)/2005), μαζί με την υποβολή αίτησης για πολεοδομική άδεια, υποβάλλεται Έκθεση Προκαταρκτικής Εκτίμησης Επιπτώσεων στο Περιβάλλον (ΠΕΕΠ) ή πλήρης Μελέτη Εκτίμησης Επιπτώσεων στο Περιβάλλον, (ΜΕΕΠ). Σύμφωνα με τους ισχύοντες κανονισμούς, στην περίπτωση που η προγραμματιζόμενη ανάπτυξη γίνεται για την εξουσιοδότηση ανάπτυξης η οποία ανήκει σε μία από τις κατηγορίες αναπτύξεων που διέπονται από την νομοθεσία για την Ολοκληρωμένη Πρόληψη και Έλεγχο της Ρύπανσης N 56(1)/2003, τότε και η υπό εξέταση ανάπτυξη ανήκει στην ίδια κατηγορία και ως εκ τούτου απαιτείται η εκπόνηση ΜΕΕΠ σύμφωνα με τον περί της εκτίμησης επιπτώσεων στο περιβάλλον από ορισμένα έργα νόμο N 140(1)/2005.

Σκοπός της παρούσας μελέτης είναι η εκτίμηση των περιβαλλοντικών επιπτώσεων από την κατασκευή του σταθμού αναερόβιας επεξεργασίας κατά τις τρεις φάσεις του έργου:

1. Εκτίμηση επιπτώσεων κατά τη φάση κατασκευής του έργου.
2. Εκτίμηση επιπτώσεων κατά τη φάση λειτουργίας του έργου.
3. Εκτίμηση πιθανών περιβαλλοντικών επιπτώσεων κατά τη φάση αποζήλωσης του έργου.

Τα στοιχεία που παρουσιάζονται στην μελέτη, συνδυάζονται από χάρτες, σχέδια και φωτογραφικό υλικό.
2 ΣΚΟΠΟΣ ΤΟΥ ΕΡΓΟΥ

2.1 Εισαγωγή

Θα μπορούσε να λεξικοποιήσει κριτικά άποψης για την περιοχή, εφόσον οι διαχειριστές του περιβάλλον που θα απορρέουν από τη λειτουργία της μονάδας κρίνονται ευρετικές.

Συγκεκριμένα, παρέχεται βελτίωση στο πρόβλημα της διαχείρισης των αποβλήτων που παράγονται από την εταιρεία και κατεστήστηκε στη μείωση της δυσοσμίας.

Το χοιροστάσιο είναι για τα κυπριακά δεδομένα υψηλής δυναμικότητας, 900 περίπου χιλιομέτρων. Με την κατασκευή του προτεινόμενου συστήματος, η εταιρεία στοχεύει εις την επίλυση πολλών περιβαλλοντικών προβλημάτων (π.χ. ρύπανση των νερών και του εδάφους, εκπομπή αέριων ρύπων και οσμών, κ.λπ.) και ενεργούν βελτίωση της περιβαλλοντικής συμβατότητας και βιωσιμότητας του χοιροστασίου.

2.2 Στόχοι του έργου

Οι κύριοι στόχοι του υπό ανάγκης έργου και της ανακάινισης του χοιροστασίου είναι οι εξής:

- Η διαχείριση των αποβλήτων που παράγονται από τις δραστηριότητες της εταιρείας ΝΙΚΟΣ ΠΙΜΠΟΣ ΛΤΔ, με Βέλτιστες Διαθέσιμες Τεχνικές και κατά συνέπεια στην εναρμόνιση με την νομοθεσία.

Σύμφωνα με τα σχετικά έγγραφα αναφοράς για τις Βέλτιστες Διαθέσιμες Τεχνικές της Ευρωπαϊκής Επιτροπής για την Ολοκληρωμένη Πρόληψη και Έλεγχο της Ρύπανσης, η Βέλτιστες Διαθέσιμες Τεχνικές για την διαχείριση χοιρολημάτων είναι η αναεροβική χώνευση, η επικάλυψη, η απότροπη και η απόδειξη σε χωράφια ως εργασιακοτετοιχικό (νοείται ότι η απόδειξη σε χωράφια θα πρέπει να γίνεται σύμφωνα με τον Περί Ελέγχου της Ρύπανσης των Νερών και Εδαφών Νόμο, 11/Ι/2008).

- Η ελαχιστοποίηση των επιπτώσεων στο περιβάλλον από τις επιχειρηματικές δραστηριότητες της εταιρείας.

Σύμφωνα με τον αριθμό του πληροφορικής στην Ολοκληρωμένη Οδηγία σχετικά με τις Βέλτιστες Διαθέσιμες Τεχνικές (ΒΔΤ), πρόκειται για τεχνικές που έχουν επιλεγεί και καταγραφεί από ομάδα εμπειρογνωμόνων ως οι αποτελεσματικότερες στην επίπεδη ενός υψηλού επιπέδου προστασίας του περιβάλλοντος. Δηλαδή, με την εφαρμογή ΒΔΤ για τις παραγωγικές διαδικασίες της εταιρείας, υποδηλώνεται η ελαχιστοποίηση των επιπτώσεων στο περιβάλλον από τις επιχειρηματικές δραστηριότητες της εταιρείας και επιπρόσθετα, με την εφαρμογή οποιασδήποτε από τις ΒΑΤ για την επεξεργασία της κοπρίας, συνεπάγεται η ελαχιστοποίηση των επιπτώσεων στο περιβάλλον τόσο
από την διαχείριση της κοπριάς όσο και γενικότερα από τις επιχειρηματικές δραστηριότητες της εταιρείας. Η δε τελική επιλογή της τεχνικής γίνεται με κριτήρια που αναφέρονται στην μελέτη.

➢ Στην μείωση της οσμορύπανσης και της εκπομπής θερμοκηπιακών αερίων.

Η υφιστάμενη τακτική αποθήκευση και η συνεπαγόμενη σήψη της κοπριάς, σε τεμάχια γης της περιοχής, έχει ως αποτέλεσμα την εκπομπή δύσοσμων πτητικών ουσιών/ενώσεων (αμμονία, υδρόθειο, κλπ.) στην ατμόσφαιρα, καθώς επίσης και θερμοκηπιακών αερίων (διοξείδιο του άνθρακα, μεθάνιο, κλπ.). Για την επιλογή της ΒΔΤ που υιοθετείται για την διαχείριση της κοπριάς, λαμβάνεται υπόψη η αποτελεσματικότητα της κάθε τεχνικής στην μείωση της εκπομπής δύσοσμων πτητικών ουσιών/ενώσεων και θερμοκηπιακών αερίων.

➢ Στην βελτίωση της βιωσιμότητας της εταιρείας.

Για την τελική επιλογή της ΒΔΤ για την διαχείριση της κοπριάς, έχουν μελετηθεί οι τεχνικές αυτές από τις οποίες παράγεται εκμετάλλευση ενέργεια. Ως εκ τούτου λαμβάνεται υπόψη και η αποτελεσματικότητα της κάθε τεχνικής να διαχειρίζεται και άλλα απόβλητα που προκύπτουν από τις επιχειρηματικές δραστηριότητες της εταιρείας. Επίσης, λαμβάνεται υπόψη η αισθητική της κάθε τεχνικής. Ως παράδειγμα, η λιπασματοποίηση με την μέθοδο “Windrow”, η οποία αποτελεί ΒΔΤ, έχει αποκλειστικά λόγο του μεγάλου χώρου που απαιτείται για την εξάπλωση της κοπριάς, κάτι που θα είχε ως αποτέλεσμα την κακή αισθητική.

Όπως αναφέρεται και πιο πάνω, για την επιλογή της ΒΔΤ για την διαχείριση των λυμάτων, λαμβάνεται υπόψη και η αποτελεσματικότητα της κάθε τεχνικής να διαχειρίζεται και άλλα απόβλητα που προκύπτουν από τις επιχειρηματικές δραστηριότητες της εταιρείας. Επίσης, λαμβάνεται υπόψη η αισθητική της κάθε τεχνικής. Ως παράδειγμα, η λιπασματοποίηση με την μέθοδο Windrow, η οποία αποτελεί ΒΔΤ, έχει αποκλειστικά λόγο του μεγάλου χώρου που απαιτείται για την εξάπλωση των λυμάτων, κάτι που θα είχε ως αποτέλεσμα την κακή αισθητική.
3 ΠΕΡΙΓΡΑΦΗ ΚΑΙ ANALΥΣΗ ΤΟΥ ΥΦΙΣΤΑΜΕΝΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

3.1 Εισαγωγή

Το προτεινόμενο έργο θα ανεγερθεί σε τεμάχιο που συνορεύει με το υφιστάμενο χοιροστάσιο. Το εν λόγω τεμάχιο (Αρ. Τεμ: 270, Φ/Σχ: 29/28), βρίσκεται εντός της Γεωργικής Ζώνης Γ3 της κοινότητας Ορούντας, της επαρχίας Λευκωσίας, τοποθεσία ‘Πλάτσα’. Η συνολική επιφάνεια του τεμαχίου είναι 14.716 τ.μ. Το τεμάχιο αναπαρίσταται στο συνημμένο τοπογραφικό σχέδιο που έχει περιληφθεί στο Παράρτημα Β. Το τεμάχιο είναι ιδιόκτητο της εταιρίας ΝΙΚΟΣ ΠΙΜΠΟΣ ΛΤΔ.

Οι πλησιέστεροι οικισμοί στην υπό μελέτη περιοχή είναι η Ορούντα σε απόσταση περίπου 1,5 χλμ. βόρεια, 5 χλμ. ανατολικά το Μένοικο και 4 χλμ. βόρεια η Περιστερώνα. Στην ίδια περιοχή (Ορούντα, Μένοικο και Ακάκι) λειτουργούν εκτός του υπό μελέτη χοιροστασίου αρκετές κτηνοτροφικές μονάδες.

Εικόνα 3-1. Τοποθεσία προτεινόμενου έργου και περιοχές γύρω από την υπό μελέτη περιοχή.

Οι βιομηχανίες που αναπτύχθηκαν στα χωριά της περιφέρειας σχετίζονται κυρίως με την γεωργία και την κτηνοτροφία. Υπάρχουν στην περιοχή σειρά κτηνοτροφικών μονάδων, ένα σφαγείο, συσκευαστήριο
κρέατων, ελαιοτριβεία, γαλακτοκομεία, συσκευαστήρια γεωργικών προϊόντων, κλπ. Λειτουργούν επίσης βιοτεχνίες που ασχολούνται με την κατασκευή μεταλλικών και ξύλινων επιπλών, σπάρτων, μωσαϊκών και ειδών πλεκτικής.

3.2 Τοπογραφία και Εδαφολογία

Η περιοχή στην οποία θα ανεγερθεί το προτεινόμενο έργο χαρακτηρίζεται από τοπογραφία με μικρές υψομετρικές εξάρσεις. Η ευρύτερη περιοχή μελέτης ευρίσκεται στη γεωμορφολογική ζώνη της Δυτικής Μεσαορίας. Χαρακτηρίζεται ως πεδινή (με ήπιες κλίσεις) έως ήμιορεινή με υψόμετρα που κυμαίνονται μεταξύ 220 και 360 μ. Κύριο μορφολογικό χαρακτηριστικό της περιοχής αποτελεί η παρουσία διάσπαρτων επιμηκών οροπεδίων με σχετικά απότομες κλίσεις των πρανόν τους, τα οποία δεσπόζουν ως τοπογραφικές εξάρσεις μέσα στο πεδινό ανάγλυφο. Η κατεύθυνσή τους είναι BN και BD – NA.

Με βάση τον εδαφολογικό χάρτη της Κύπρου, οι κυρίαρχες ομάδες που αποτελούν το έδαφος της υπό μελέτη περιοχής είναι epipetric – CALCISOLS (επιφανειακό στρώμα) και leptic – chromic – LUVISOLS (υπεδάφιο στρώμα).

Τα CALCISOLS είναι χώματα τα οποία έχουν ένα ασβεστούχο και ένα πετρο-ασβεστούχο ορίζοντα μέσα στα πρώτα 100 εκατ. από την επιφάνεια του εδάφους. Επίσης, δεν έχουν διαγωνιστικό ορίζοντα εκτός από έναν από τους ορίζοντες ochric, cambic, argic ή vertic. Η υποκατηγορία ομάδας αναφοράς epipetric αναφέρεται σε σκληρά συνεκτικά εδάφη με βάθος μέχρι 50cm.

Τα χαρακτηριστικά του εδάφους LUVISOLS είναι τα εξής: χώματα που έχουν ένα μόνο ορίζοντα argic, με άργιλο ικανότητας ανταλλαγής κατίοντων ίσης με ή περισσότερα από 24 cmol. kg⁻¹. Η υποκατηγορία ομάδας αναφοράς chromic αναφέρεται σε έδαφος με κοκκινωπό χρώμα. Η υποκατηγορία ομάδας αναφοράς leptic αναφέρεται σε έδαφος με συνεχόμενη βραχώδη σύσταση μεταξύ 25 και 100cm από την επιφάνεια του εδάφους.

Ταυτοποίηση Πεδίου
Λόγω της πλούσιας δομής και σύνθεσης του εδάφους που παρουσιάζεται στην μελετώμενη περιοχή, συμπεραίνεται με βάση και τα πιο πάνω δεδομένα, ότι οι ορίζοντες από τους οποίους αποτελείται το έδαφος της περιοχής είναι οι chromic και οι leptic. Το υλικό leptic αποτελείται από συνεχή σκληρή βράχο μεταξύ 25 και 100 εκατ. από την επιφάνεια του εδάφους. Μια γενική περιγραφή του ορίζοντα chromeic είναι το κοκκινοπό χρώμα που τον χαρακτηρίζει. Το έδαφος με τον ορίζοντα αυτό αποτελεί ένα από τα πιο γόνιμα εδάφη της Κύπρου.

Μηχανολογικά Χαρακτηριστικά

Η μηχανολογική ανάλυση των δύο κυρίαρχων ομάδων χώματος που χαρακτηρίζουν την υπό μελέτη περιοχή δίνονται στον πίνακα κάτω.

Πίνακας 3-1. Μηχανολογικές ιδιότητες εδάφους υπό μελέτη περιοχής.

<table>
<thead>
<tr>
<th>SOIL GROUP</th>
<th>Depth in cms</th>
<th>Clay % 5±</th>
<th>Silt % 5±</th>
<th>M.C. Sand % 5±</th>
<th>F. Sand % 5±</th>
<th>pH 0.3±</th>
<th>CaCO3 % 10±</th>
<th>Organic Matter %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCISOLS epipetric</td>
<td>0-20</td>
<td>38</td>
<td>16</td>
<td>14</td>
<td>27</td>
<td>8.3</td>
<td>18</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>20-45</td>
<td>45</td>
<td>25</td>
<td>10</td>
<td>20</td>
<td>8.4</td>
<td>24</td>
<td>0.5</td>
</tr>
<tr>
<td>LUVISOLS Leptic - chromic</td>
<td>0-20</td>
<td>37</td>
<td>30</td>
<td>8</td>
<td>25</td>
<td>8.3</td>
<td>14</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>20-45</td>
<td>48</td>
<td>24</td>
<td>8</td>
<td>20</td>
<td>8.4</td>
<td>18</td>
<td>0.8</td>
</tr>
</tbody>
</table>

3.3 Γεωλογικά και Υδρολογικά Χαρακτηριστικά Περιοχής

Γεωλογικά, η περιοχή στην οποία θα ανεγερθεί το υπό μελέτη έργο, κατατάσσεται στην ιζηματογενή ακολουθία του Τροόδους και συγκεκριμένα τοποθετείται ανάμεσα στο σχηματισμό Σύναγαμα και το σχηματισμό Αλλούβιο - Κολλούβιο. Στα ανατολικά του τεμαχίου εκτείνεται περιοχή που χαρακτηρίζεται από γεωμορφολογία του σχηματισμού Λευκωσίας (Ιζηματογενή ακολουθία Τροόδους), ενώ στα νότια καθώς πλησιάζουμε προς το Τρόόδος εμφανίζονται ηφαιστειακά πετρώματα του Ανώτερου ορίζοντα λαβίων (Οφιόλιθος Τροόδους).
Το Σύναγμα είναι ο νεότερος ιζηματογενής σχηματισμός της Κύπρου, πλειστοκαινικής ηλικίας, που επικάθεται με ασυμφωνία σε όλους τους παλαιότερους γεωλογικούς σχηματισμούς. Αποτελείται από αποθέσεις αμμοχάλικων που προήλθαν από τη διάβρωση κυρίως των οφιολιθικών πετρωμάτων του Τροόδους. Τα συστατικά στοιχεία του συνάγματος είναι γενικά μέχρι αποστρογγυλευμένα τεμάχια, οφιολιθικών πετρωμάτων καθώς επίσης άμμος, πηλός και υλίς. Τα συστατικά αυτά δεν έχουν οποιαδήποτε διαβάθμιση και είναι κυρίως χωρίς ή μόνο με ελαφριά ηπειρόληψη μεταξύ τους. Σε σπάνιες περιπτώσεις, κυρίως στην κορυφή του συνάγματος, η ηπειρόληψη είναι ισχυρή και έτσι σχηματίζονται σκληρά λατυπίτα χαρακτηριστικά στη διάβρωση. Το υλικό της ηπειρόληψης είναι ανθρακικό ασβέστιο.

Οι συγκεντρώσεις των αμμοχάλικων του συνάγματος, που στη γεωλογική ορολογία ονομάζονται επίσης αλλοβιακά ριπίδια, αποτέθηκαν από χείμαρρους. Η εναπόθεση τόσων μεγάλων ποσοτήτων αμμοχάλικων είναι το αποτέλεσμα ψηλής βροχόπτωσης και απόκομμας ανύψωσης του Τροόδους, τα πετρώματα του οποίου οι εκ τούτου διαβρώθηκαν έντονα και τα προϊόντα της διάρρηξης μεταφέρθηκαν από τα νερά. Προςεκτική μελέτη των αποθέσεων αυτών οδηγεί στη διάκριση τριών κύκλων απόθεσης, οι οποίοι χωρίζονται μεταξύ τους με την παρουσία κοκκινισμών (παλαιοεδαφών). Πιθανώς, οι κύκλοι εναπόθεσης του συνάγματος να αντιστοιχούν με τις τρεις πρώτες παγετώδεις περιόδους της Ευρώπης, και τα παλαιοεδάφη με τις μεσοπαγετώδεις περιόδους. Κατά τις παγετώδεις περιόδους η βροχόπτωση ήταν πολύ ψηλή, ενώ κατά τις μεσοπαγετώδεις επικρατούσαν ξηρικές συνθήκες.

Οι αλλοβιακές αποθέσεις του σχηματισμού Αλλούβιο – Καλλούβιο αποτελούνται από άμμους, υλίς, άργιλους και χαλίκια. Οι αποθέσεις αυτές εμφανίζονται στις κοίτες ποταμών και αποτελούνται από υλικά που μεταφέρονται από την δράση του επιφανειακού νερού. Η χημική σύσταση των αποθέσεων είναι διάφορη λόγω των υλικών που προέρχονται από την αποσάθρωση διάβρωσης πετρωμάτων οι οφιολιθικές σειρές (πυριτική βασική σύσταση) και των αυτόχθονων ιζηματογενών πετρωμάτων (ασβεστική σύσταση).

Στην περιοχή μελέτης υπάρχει ένας σημαντικός αριθμός ποταμών, χειμάρρων και ρωκίων οι οποίοι συγκλίνουν και σχηματίζουν τους ποταμούς Σεράχη, ο οποίος καταλήγει στον κόλπο της Μόρφου. Οι σημαντικότεροι από τους παραποτάμους του Σεράχη είναι ο ποταμός Περιστερώνας και ο ποταμός Ακακίου. Στα ανατολικά του τομέα της και σε κοντινή απόσταση (~200μ) διέρχεται ο ποταμός Περιστερώνας, η κοίτη του οποίου εντάσσεται σε ζώνη προστασίας Z3.

Το υδατικό σύστημα της περιοχής εντάσσεται στο ευρύτερο σύνθετο σύστημα Κεντρικής Μεσοαίρας που εκτείνεται μεταξύ των χωριών Κοντραφάς/Αστρομερίτης και Λευκωσία/Ποταμιά. Ο υδροφορείας Κεντρικής Μεσοαίρας είναι από τους σημαντικότερους της Κύπρου και αποτελεί την κυριότερη πηγή άρδευσης και ύδρευσης της περιοχής. Συγκεκριμένα το μελετώμενο τεμάχιο υπέρκειται στο υδροφορέα του ποταμού της Ελιάς (αρ.55 στο χάρτη υδροφορέων. Οι χάρτες υδροφορέων της Κύπρου και της περιοχής μελέτης δίνονται στο Παράρτημα.
3.4 Μετεωρολογικά Δεδομένα

Η ανάλυση που γίνεται πιο κάτω έχει πραγματοποιηθεί με βάση κυρίως τα δεδομένα της Μετεωρολογικής Υπηρεσίας από το μετεωρολογικό σταθμό Αθαλάσσας (Station Number 666, Latitude:35°09', Longitude:33°24', Elevation:162m). Επίσης συμπληρωματικά στοιχεία ως προς την βροχόπτωση έχουν χρησιμοποιηθεί από το μετεωρολογικό σταθμός Κοκκινοτριμιθίας (Station Number 520, Latitude:35°09', Longitude:33°12', Elevation:220m)

Όλα τα αριθμητικά δεδομένα της Μετεωρολογικής Υπηρεσίας που έχουν χρησιμοποιηθεί παρουσιάζονται στα Παραρτήματα.

Θερμοκρασία

Εικόνα 3-2. Μηνιαία καταγραφή θερμοκρασίας στο σταθμό Αθαλάσσας

Στην ευρύτερη περιοχή της μελέτης η μέση ημερήσια θερμοκρασία κατά την περίοδο 1991 – 2005 κυμαίνεται από 10,6 °C με 29,7 °C. Ο μέσος αριθμός ημερήσιον το χρόνο με παγετό αέρα είναι 1,7, ενώ με παγετό εδάφους 17,8. Τα μηνιαία κλιματολογικά στατιστικά στοιχεία παραθέτονται στα Παραρτήματα.

Βροχόπτωση

Η μέση ετήσια βροχόπτωση στον σταθμό Κοκκινοτριμιθίας για την περίοδο 1991– 2000 καταγράφηκε να είναι 267,1 mm, και κυμαίνεται μεταξύ 0,2 mm τον μήνα Ιούλιο και 55,7 mm τον μήνα Δεκέμβριο. Οι
μήνες Ιανουαρίου, Φεβρουαρίου, Νοέμβριος και Δεκέμβριος παρουσιάζουν την πιο ψηλή βροχόπτωση, ενώ οι μήνες του καλοκαίριού και ειδικότερα ο Ιούλιος και ο Αύγουστος παρουσιάζουν ελάχιστη βροχόπτωση.

Ηλιοφάνεια

Όπως έχει καταμετρηθεί στον σταθμό Αθαλάσσας από το 1991 μέχρι το 2005, η διάρκεια της ηλιοφάνειας κυμαίνεται από 5,9 ώρες την ημέρα (τον μήνα Δεκέμβριο) έως 12,5 ώρες την ημέρα τον μήνα Ιούλιο. Η μέση χρόνια διάρκεια ηλιοφάνειας έχει υπολογισθεί στις 9,1 ώρες την ημέρα. Αναλυτικά οι τιμές της ηλιοφάνειας επησίως παρουσιάζονται στα Παραρτήματα.

Άνεμος

Οι άνεμοι στην Κύπρο είναι συνήθως ασθενείς ως μέτριοι ενώ κατά διαστήματα μετατρέπονται σε ισχυρούς. Η μέση ημερήσια ταχύτητα ανέμου στον σταθμό της Αθαλάσσας είναι 3 ως 4 κόμβους με κατεύθυνση 230 και 270 μοίρες αντίστοιχα. Η μεγαλύτερη μέση άμεση τιμή κυμαίνεται από 26-38 κόμβους. Η μέγιστη στιγμιαία ταχύτητα ανέμου ήταν 52 κόμβοι με κατεύθυνση 360 μοίρες και παρουσιάστηκε κατά τον μήνα Νοέμβριο. Στο Παραρτήματα παρουσιάζονται χαρακτηριστικά του ανέμου σε ύψος 10 μέτρων από την επιφάνεια του εδάφους.

3.5 **Σεισμικά Χαρακτηριστικά**

Η Κύπρος βρίσκεται μέσα στη δεύτερη σεισμογενή ζώνη της γης, που εκτείνεται από τον Ατλαντικό Ωκεανό κατά μήκος της λεκάνης της Μεσογείου διαμέσου της Ιταλίας, Ελλάδας, Τουρκίας, Περσίας και των Ινδίων και φτάνει μέχρι τον Ειρηνικό Ωκεανό.

Η σεισμική δραστηριότητα στην περιοχή της Κύπρου είναι πολύ μικρότερη από αυτή της Ελλάδας και της Τουρκίας, αλλά μεγαλύτερη από εκείνη της Συρίας και του Λιβάνου. Φαίνεται να είναι ισοδύναμη με εκείνη του Ισραήλ και της Αγγλίας. Η σεισμική δραστηριότητα στην Κύπρο περιγράφεται από τον πιο κάτω Σεισμικό Χάρτη. Στη ζώνη αυτή εκδηλώνονται σεισμοί, που αντιπροσωπεύουν το 15% της παγκόσμιας σεισμικής δραστηριότητας.

Η Κύπρος χωρίζεται σε τρεις σεισμικές ζώνες με βάση τις σεισμικές εντάσεις που αναμένονται. Για κάθε ζώνη οι τιμές υπολογισμού για την μέγιστη επίταχυνση εδάφους Amax, είναι ως εξής: 1. Ζώνη I / Amax = 0,15, 2. Ζώνη II / Amax = 0,2, 3.Ζώνη III / Amax=0,25

Βάσει του σεισμικού χάρτη της Κύπρου που παρουσιάζεται πιο κάτω, η υπό μελέτη περιοχή κατατάσσεται στη σεισμική ζώνη ΙΙ, της οποίας η μέγιστη επιτάχυνση εδάφους είναι 0,2 AgR και 10% πιθανότητα υπέρβασης αυτής της τιμής τα επόμενα 50 χρόνια.
3.6 Ποιότητα της Ατμόσφαιρας

Σε ότι αφορά την υγεία και την ποιότητα του αέρα, σημασία έχουν οι συγκεντρώσεις σκονών και τοξικών ουσιών καθώς και αερίων όπως είναι η αμμωνία, το διοξείδιο του άνθρακα, το υποξείδιο και το μεθάνιο. Σε ότι αφορά τις σκόνες, το μέγεθος των σωματιδίων σκόνης είναι περισσότερο σπουδαίο. Τα σωματίδια διαμέτρου μικρότερης από 10μm είναι εκείνα που εξετάζονται για λόγους υγείας, εφόσον είναι ικανά να διεισδύουν μέσα στον πνεύμονα. Επίσης είναι αιωρούμενα στην ατμόσφαιρα για μακράς περιόδους, ενώ τα μεγαλύτερα σωματίδια τείνουν να επικάθονται σε επιφάνειες και αντιπροσωπεύουν μια όχληση μόνο. Για αυτούς τους λόγους, τα πρότυπα ποιότητας του αέρα συσχετίζονται με εκείνα τα σωματίδια που αναφέρονται σαν αιωρούμενα στον αέρα.
Πίνακας 3-2. Πρότυπα ποιότητας του αέρα: Αιωρούµενα σωµατίδια

<table>
<thead>
<tr>
<th>Οργανισµός</th>
<th>Μέσος ετήσιος</th>
<th>50% τιµών</th>
<th>98% τιµών</th>
<th>Μέσος ηµερήσιος</th>
<th>Οριακός µέσος</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οδηγία ΕΟΚ (2)</td>
<td>-</td>
<td>-</td>
<td>200(1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Οριακή τιµή</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κατευθυντήρια τιµή</td>
<td></td>
<td>50</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Παγκόσµια Οργάνωση Υγείας</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>400</td>
</tr>
<tr>
<td>Παγκόσµια Τράπεζα</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Οι συγκεντρώσεις μετρούνται ως µg/m³
(2) Η οδηγία της ΕΟΚ αναφέρεται σε µέσες οριακές µετρήσεις

Με βάση το έγγραφο καθοδήγησης για την εφαρμογή του Ευρωπαϊκού Μητρώου Ρυπογόνων Εκποµπών, το Τµήµα Επιθεώρησης Εργασίας του Υπουργείου Εργασίας και Κοινωνικών Ασφαλίσεων (οι αρµόδια αρχές του κράτους για τις αέριες εκποµπές), ύστερα από εκδόσεις όρια αναφοράς για την εκποµπή αερίων στην ατµόσφαιρα από κτηνοτροφικές µονάδες. Στον Πίνακα 3.6.1 (2) που ακολουθεί παρουσιάζονται τα όρια αναφοράς που αφορούν την αµµωνία, το διοξείδιο του άνθρακα, το µεθάνιο και το υποξείδιο του αζώτου.

Πίνακας 3-3. Πρότυπα ποιότητας αέρα: Διοξείδιο του θείου

<table>
<thead>
<tr>
<th>Οργανισµός</th>
<th>Μέσος ετήσιος</th>
<th>50% τιµών</th>
<th>98% τιµών</th>
<th>Μέσος ηµερήσιος</th>
<th>Οριακός µέσος</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οδηγία ΕΟΚ (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Οριακή τιµή</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 (>40)</td>
<td>250 (>150)</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 (<40)</td>
<td>350 (<150)</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κατευθυντήρια τιµή</td>
<td>40-60</td>
<td></td>
<td>100-150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Η ΕΟΚ δεν έχει δημοσιεύσει πρότυπα για μονοξείδιο του άνθρακος. Εντούτοις, σύμφωνα με τον Π.Ο.Υ προβλέπονται τα ακόλουθα:

- 100 mg/m³ (80 ppm) για μέγιστη περίοδο έκθεσης 15 λεπτά
- 60 mg/m³ (50 ppm) για μέγιστη περίοδο έκθεσης 30 λεπτά
- 30 mg/m³ (25 ppm) για μέγιστη περίοδο έκθεσης μία ώρα
- 10 mg/m³ (10 ppm) για μέγιστη περίοδο έκθεσης 8 ώρες

Στην συνέχεια παρουσιάζονται τα πρότυπα ποιότητας του αέρα από τρεις διεθνείς οργανισμούς. Αυτά είναι της Ευρωπαϊκής Κοινότητας, της Παγκόσμιας Οργάνωσης Υγείας και του Παγκόσμιου Οργανισμού Υγείας. Μόνο οι Οδηγίες της ΕΟΚ έχουν υποχρεωτικό καθεστώς (στην ΕΟΚ), ενώ τα άλλα πρότυπα είναι μόνο για κατευθυντήριους σκοπούς.

Τα πρότυπα της ποιότητας του αέρα σχεδιάζονται για να προστατεύεται η ανθρώπινη υγεία και το περιβάλλον γενικότερα. Αυτά είναι τα αέρια και οι ρύποι οι οποίοι θέτουν την ανθρώπινη υγεία σε περιβαλλοντικό κίνδυνο πέραν από ορισμένες συγκεντρώσεις.

Για παράδειγμα το διοξείδιο του υδρογόνου, το οποίο είναι ερεθιστικό στο αναπνευστικό σύστημα σε ψηλές συγκέντρωσεις. Το διοξείδιο του αζώτου, το οποίο αποτελεί δυναμικό κίνδυνο για την υγεία, έχει σημαντικό ρόλο στο σχηματισμό των φωτοχημικών αντιδράσεων, π.χ. δημιουργία ζόντος (O₃). Τα SO₂ και NOₓ προκαλούν ζόντη βροχή.

Τα πρότυπα ποιότητας του αέρα για SO₂ και NOₓ που επιβάλλονται από τους τρεις οργανισμούς παρουσιάζονται στον Πίνακα που ακολουθεί:
Πίνακας 3-4. Πρότυπα ποιότητας αέρα: Διοξείδιο του αζώτου.

<table>
<thead>
<tr>
<th>Οργανισμός</th>
<th>Μέσος ετήσιος</th>
<th>50% τιμών</th>
<th>98% τιμών</th>
<th>Μέσος ημερήσιος</th>
<th>Οριακός μέσος</th>
</tr>
</thead>
<tbody>
<tr>
<td>Οδηγία EOK (2)</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Οριακή τιμή</td>
<td>-</td>
<td>50</td>
<td>135</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Κατευθυντήρια τιμή</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Παγκόσμια Οργάνωση</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>150</td>
<td>400</td>
</tr>
<tr>
<td>Υγείας</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Παγκόσμια Τράπεζα</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(2) Η οδηγία της EOK αναφέρεται σε μέσες οριακές μετρήσεις.

Οι οδηγίες της EOK δίνουν δύο ομάδες οριακές (limit) και κατευθυντήριες (guide) τιμές. Οι οριακές τιμές είναι συγκεντρώσεις ρύπων, οι οποίες δεν πρέπει να υπερβαίνουν εντός των χωρών της EOK και καθορίσθηκαν για να προστατεύουν την ανθρώπινη υγεία. Σε μερικές συνθήκες οι τιμές αλλάζουν σε σχέση με το μέσο όρο των μετρήσεων, των συγκεντρώσεων και στην περίπτωση του διοξείδιου του θείου, τη σχετιζόμενη συγκέντρωση σωματιδιίων.

Τα αιωρούμενα σωματίδια και διοξείδιο του θείου λαμβάνουν οριακές τιμές διαφορετικές που εξαρτώνται από τη συγκέντρωση του καθενός, π.χ. μια υψηλή συγκέντρωση SO₂ επιτρέπεται εάν τα αιωρούμενα σωματίδια είναι χαμηλά και αντίστροφα.

3.7 Πληθυσμιακά και Δημογραφικά Δεδομένα

Στον πίνακα που ακολουθεί παρουσιάζονται τα πληθυσμιακά δεδομένα των κοινοτήτων που γειτνιάζουν με την περιοχή μελέτης. Τα στοιχεία αυτά πάρθηκαν από το Τμήμα Στατιστικής και Ερευνών Κύπρου.
Πίνακας 3-5. Πληθυσμιακά δεδομένα των κοινοτήτων που γειτνιάζουν με την περιοχή μελέτης.

<table>
<thead>
<tr>
<th>ΔΗΜΟΣ/ ΚΟΙΝΟΤΗΤΑ/ ΕΝΟΡΙΑ</th>
<th>ΚΑΤΟΙΚΙΕΣ</th>
<th>ΝΟΙΚΟΚΥΡΙΑ</th>
<th>ΙΔΡΥΜΑΤΑ</th>
<th>ΣΥΝΟΛΟ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Σύνολο</td>
<td>Συνήθους διαμονής</td>
<td>Κενές και προσωρινής διαμονής</td>
<td>Αριθμός Πληθυσμός</td>
</tr>
<tr>
<td>Ορούντα</td>
<td>282</td>
<td>244</td>
<td>38</td>
<td>244</td>
</tr>
<tr>
<td>Ακάκι</td>
<td>845</td>
<td>779</td>
<td>66</td>
<td>780</td>
</tr>
<tr>
<td>Περιστερόνα</td>
<td>762</td>
<td>703</td>
<td>59</td>
<td>703</td>
</tr>
<tr>
<td>Μένοικο</td>
<td>328</td>
<td>308</td>
<td>20</td>
<td>311</td>
</tr>
<tr>
<td>Σύνολο</td>
<td>2.217</td>
<td>2.034</td>
<td>183</td>
<td>2.038</td>
</tr>
</tbody>
</table>

3.8 Πολεοδομικά Δεδομένα

Το υφιστάμενο χοιροστάσιο είναι κατασκευασμένο σε Γεωργική ζώνη Γ3. Το ίδιο ισχύει και για το προτεινόμενο τεμάχιο ανέγερσης του σταθμού επεξεργασίας των αποβλήτων.

Βάση της Δήλωσης Πολιτικής, ο σταθμός επεξεργασίας λιμάτων εντάσσεται στην κατηγορία των έργων υποδομής. Σύμφωνα με την πολιτική της Πολεοδομικής Αρχής, έργο υποδομής θα επιτρέπεται εφόσον:

- Εξυπηρετεί το δημόσιο συμφέρον, ή το χωριό ή την ευρύτερη περιοχή στην οποία χωροθετείται και συντελεί ουσιαστικά στην οικονομία και στη βελτίωση της ποιότητας ζωής στην περιοχή.
- Δεν επηρεάζει δυσμενώς το περιβάλλον, τη δημόσια υγεία, τις ανέσεις των κατοίκων της περιοχής και την άνετη και ασφαλή διακίνηση της τροχαίας και των πεζών στην περιοχή.
3.9 Χωροταξικά Δεδομένα

- Απόσταση από οικισμούς

Η οικιστική περιοχή της Ορούντας βρίσκεται στα βόρεια – βορειοανατολικά του υπό μελέτη τεμαχίου σε απόσταση 1,5 χλμ. και συνιστά τον εγγύτερο προς την μονάδα οικισμό. Στα βόρεια – βορειοδυτικά, σε απόσταση άνω των 4 χλμ. βρίσκεται η οικιστική περιοχή της Περιστερώνας που αποτελεί τον μεγαλύτερο από τους κοντινούς οικισμούς.

- Απόσταση από σχολεία

Το πλησιέστερο σχολείο από τον υπό μελέτη χώρο είναι το Δημοτικό Σχολείο Ορούντας, το οποίο βρίσκεται σε απόσταση 1,5 χλμ. βόρεια - βορειοανατολικά του τεμαχίου.

- Απόσταση από νοσηλευτήριο

Σε απόσταση άνω των 6 χλμ. βορειοανατολικά του εξεταζόμενου χώρου συναντάται το Κέντρο Υγείας Ακακίου, το οποίο είναι το πλησιέστερο νοσηλευτήριο στην περιοχή μελέτης.

- Απόσταση από αυτοκινητόδρομο

Ο πλησιέστερος αυτοκινητόδρομος είναι ο κεντρικός δρόμος Ορούντας – Μαρίνας, που βρίσκεται σε απόσταση 0,5 χλμ. ανατολικά από το υπό μελέτη τεμάχιο.

3.10 Βιολογικό Περιβάλλον

Το προτεινόμενο έργο θα κατασκευαστεί σε τεμάχιο γης εντός γεωργοκτηνοτροφικής περιοχής. Το τεμάχιο γης στο οποίο θα ανεγερθεί το προτεινόμενο έργο δεν είναι προστατευόμενο τοπίο και η περιοχή δεν εντάσσεται στις περιοχές NATURA 2000. Στα ανατολικά του τεμαχίου και σε κοντινή απόσταση (~200μ) διέρχεται ο ποταμός Περιστερώνας, η κοίτη του οποίου εντάσσεται σε ζώνη προστασίας Z3.
Η αναβάθμιση του υπό μελέτη χοιροστασίου με την κατασκευή του αναερόβιου σταθμού επεξεργασίας των χοιρολυμάτων του χοιροστασίου, δεν αναμένεται να επιφέρει περαιτέρω αρνητικές επιπτώσεις στην χλωρίδα και πανίδα της περιοχής, ούτε θα βλάψει με κανένα τρόπο το οικοσύστημα του κοντινού ποταμού.

Τα είδη χλωρίδας που απαντούνται στην περιοχή είναι κοινά γιατί απαντάνται σε πολλά μέρη της Κύπρου. Από σχετικές μελέτες, βιβλιογραφία και επί τόπου έρευνα τα κυριότερα είδη χλωρίδας που απαντούνται στην ευρύτερη περιοχή δίνονται στον παρακάτω πίνακα. Στην ευρύτερη περιοχή μελέτης καταγράφηκαν εννέα διαφορετικά είδη φυτών, εκ των οποίων ένα από αυτά είναι ενδημικό και τα υπόλοιπα ιθαγενές. Ο πλήρης κατάλογος των ειδών χλωρίδας που καταγράφηκαν στην περιοχή παρουσιάζεται στον πιο κάτω πίνακα.

Πίνακας 3-6. Κατάλογος των ειδών χλωρίδας

<table>
<thead>
<tr>
<th>Λατινικό όνομα</th>
<th>Ελληνικό όνομα</th>
<th>Είδος</th>
<th>Κατηγορία</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Asparagus acutifolius</td>
<td>Αγρελιά</td>
<td>ηµίθαµνος</td>
<td>Ιθαγενές</td>
</tr>
<tr>
<td>2 Asparagus stipularis</td>
<td>Αγρελιά ήρεµη αναρριχώµενος θάµνος</td>
<td>Ιθαγενές</td>
<td></td>
</tr>
<tr>
<td>3 Fumana thymifolia</td>
<td>Τρανίδιν ηµίθαµνος</td>
<td>Ιθαγενές</td>
<td></td>
</tr>
<tr>
<td>4 Inula viscose</td>
<td>Ινούλα η ιξώδης ηµίθαµνος</td>
<td>Ιθαγενές</td>
<td></td>
</tr>
<tr>
<td>5 Noaea macronata</td>
<td>Αντρούκλιαρος ακανθωτός θάµνος</td>
<td>Ιθαγενές</td>
<td></td>
</tr>
<tr>
<td>6 Phagnalon rupestre</td>
<td>Ασπροθύµαρος ηµίθαµνος</td>
<td>Ιθαγενές</td>
<td></td>
</tr>
<tr>
<td>7 Sarcopoterium spinosum</td>
<td>Μαζίν πολύκλαδος θάµνος</td>
<td>Ιθαγενές</td>
<td></td>
</tr>
<tr>
<td>8 Teucrium micropodioides</td>
<td>Τεύκριο ηµίθαµνος</td>
<td>Ιθαγενές</td>
<td></td>
</tr>
<tr>
<td>9 Thymus capitatus</td>
<td>Θρουµπίν αρωµατικός θάµνος</td>
<td>Ιθαγενές</td>
<td></td>
</tr>
</tbody>
</table>

Είδη Πανίδας

Τα είδη πανίδας που απαντούνται στην περιοχή είναι κοινά για τις περισσότερες πεδινές αγροτικές περιοχές. Στα είδη πανίδας περιλαμβάνονται θηλαστικά, ερπετά και πουλιά.

- Θηλαστικά. Στην υπό μελέτη περιοχή καταγράφηκαν τρία είδη θηλαστικών. Τα θηλαστικά αυτά είναι κοινά στο μεγαλύτερο μέρος της Κύπρου. Ένα από αυτά είναι ενδημικό, ο λαγός (Lepus europaeus cyprius) και τα άλλα δύο είδη είναι τροπικά όπως ποντικός (mus musculus) και ποντίκα. Επιπλέον στην περιοχή απαντάνται νυχτερίδες (pipistrellus pipistrellus), που ανήκουν στην κατηγορία των μικροχειρόπτερων και τρέφονται με έντομα.
3.11 Στάσεις και απόψεις των κατοίκων της περιοχής της μελέτης

Προκειμένου να διερευνηθούν οι απόψεις της κοινότητας για τη δημιουργία του βιολογικού σταθμού, πραγματοποιήθηκε ενημέρωση του κοινοτάρχη κ. Νικόλαου Θεμιστοκλέους, σχετικά με τη λειτουργία και τον σκοπό κατασκευής του σταθμού. Κατόπιν συζήτησης συμπεραίνεται ότι η δημιουργία βιολογικού σταθμού επεξεργασίας των χοιρολυμάτων της εταιρίας Νίκος Πίμπος Λτδ κρίνεται ως θετική από την κοινότητα Ορούντας, καθώς μπορεί να αμβλύνει τα προβλήματα οσμών στην ευρύτερη περιοχή και γενικά να μειώσει το περιβαλλοντικό αντίκτυπο από τη λειτουργία του χοιροστασίου. Βέβαια οσμές θα εξακολουθήσουν να εκπέμπονται από τα υποστατικά του χοιροτροφείου λόγω της λειτουργίας του εξαερισμού, όμως συνολικά θα υπάρχει σημαντική πρόοδος σε αυτό το ζήτημα. Μοναδική επιφύλαξη του κοινοτάρχη είναι να εξασφαλισθεί ότι ο σταθμός θα λειτουργεί με Βέλτιστες Διαθέσιμες Τεχνικές και θα τηρούνται όλες οι προδιαγραφές κατασκευής και λειτουργίας που προβλέπει ο νόμος για τέτοιου είδους έργα.
4 ΔΙΑΘΕΣΙΜΕΣ ΤΕΧΝΙΚΕΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΑΠΟΒΛΗΤΩΝ

4.1 Τεχνικές Βιολογικής Επεξεργασίας

4.1.1 Αναερόβια Χώνευση

Ανήκει στις τεχνικές ενεργειακής εκμετάλλευσης της βιομάζας με τεχνοοικονομική βιωσιμότητα όταν τα οικονομικά της κλίμακας είναι ευνοϊκά. Είναι ιδιαίτερα αποδοτική στην παραγωγή ενέργειας αλλά και ιδιαίτερα δαπανηρή σε σύγκριση με άλλες τεχνικές. Στόχος είναι η μείωση του οργανικού (δραστικού) άνθρακα και του αζώτου. Επεξεργασία κατά την οποία επιτύγχανεται αποδόμηση των οργανικών ουσιών με τη βοήθεια μικροοργανισμών στην αναπαύσης οξυγόνου και έχει ως αποτέλεσμα την παραγωγή σταθεροποιημένου οργανικού υλικού και βιοαερίου (μήμα κυρίως μεθανίου CH₄ και διοξειδίου του άνθρακα CO₂), το οποίο μπορεί να χρησιμοποιηθεί για παραγωγή ενέργειας. Το βασικότερο στοιχείο των συστημάτων αναερόβιας ζύμωσης είναι η χρήση κλειστών βιοαντιδραστήρων (χωνευτήρων).

Τα συστήματα αυτά διακρίνονται βάσει της συγκέντρωσης των στερεών της οργανικής ύλης. Υπάρχουν τα συστήματα αναερόβιας ζύμωσης χαμηλής συγκέντρωσης στερεών και τα συστήματα αναερόβιας ζύμωσης υψηλής συγκέντρωσης στερεών.

- **Αναερόβια Ζύμωση Χαμηλής Συγκέντρωσης Στερεών**

 Σε αυτή τη μέθοδο η οργανική ύλη αποδομείται - σταθεροποιείται σε συγκέντρωσεις στερεών που κυμαίνονται από 4 – 14%. Μειωνόντας τη μεθόδου είναι οι μεγάλες απαιτήσεις σε νερό για την επίτευξη των χαμηλών συγκέντρωσεων σε στερεά. Επίσης, η αφυδάτωση του τελικού στερεού προϊόντος απαιτεί πρόσθετο εξοπλισμό καθώς και την υπογραμμισμένη επεξεργασία των υγρών που παράγονται κατά την αφυδάτωση. Αυτό έχει ως αποτέλεσμα να αυξάνεται το κόστος της μεθόδου.

- **Αναερόβια Ζύμωση Υψηλής Συγκέντρωσης Στερεών**

 Σε αυτά τα συστήματα η διεργασία αφορά σε υπόστρωμα με συγκέντρωση στερεών μεγαλύτερη από 22%. Οι διαφορές με την πιο πάνω μέθοδο είναι οι εξής:
 - Λιγότερες απαιτήσεις όσον αφορά στην αφυδάτωση του χονευμένου τελικού προϊόντος
 - Ελαττωμένες απαιτήσεις σε νερό
 - Μεγαλύτερη παραγωγή βιοαερίου ανά μονάδα όγκου αντιδραστήρα
Επίδραση της Θερμοκρασίας

Οι μικροοργανισμοί χωρίζονται σε τρεις κατηγορίες, ανάλογα με τις θερμοκρασίες που μπορούν να επιβιώσουν και στις οποίες είναι πιο δραστήριοι. Η πιο ευνοϊκή θερμοκρασία είναι 55°C για τους θερμόφιλους, 35°C για τους μεσόφιλους και 20°C για ψυχρόφιλους μικροοργανισμούς. Όσο αφορά το pH, οι περισσότεροι μικροοργανισμοί αναπτύσσονται σε pH μεταξύ 6 και 8, με ευνοϊκότερο το pH 7. Σε pH χαμηλότερα από 6,5 ή μεγαλύτερα του 7,5 η παραγωγή μεθανίου μειώνεται σημαντικά αφού η μεθανογένεση μπορεί να προχωρήσει μόνο σε pH πλησίον του 7.

Τα μεθανογόνα βακτήρια φαίνεται να υπάρχουν παντού τουλάχιστον σε όλα τα αναερόβια περιβάλλοντα και επιζούν προφανώς σε ένα εύρος θερμοκρασιών. Η αλλαγή από μεσόφιλη σε θερμόφιλη ή αντίστροφα δεν είναι πρόβλημα για τους χοικών και ζωικών αποβλήτων, με την προϋπόθεση ότι η αλλαγή πρέπει να γίνει ομαλά. Εντούτοις μπορεί να πάρει μήνες μέχρι οι μεσόφιλοι οργανισμοί να προσαρμοστούν σε θερμόφιλες θερμοκρασίες.

Εικόνα 4-1. Επίδραση Θερμοκρασίας στην Αναερόβια Ζύμωση

Η παραγωγή βιοαερίου στη ψυχρόφιλη χώνευση είναι χαμηλότερη από ότι στην μεσόφιλη χώνευση. Οι διαφορές στη παραγωγή είναι εύρους 30% στις κοπριές βοοειδών και 22% στις λάσπες βιολογικών σταθμών. Στη θερμοκρασία 22°C, η βιοαποδόση των λάσπων βιολογικών σταθμών, των κοπριών βοοειδών και των λυμάτων χοίρων, χρειάζεται διπλάσιο χρονικό διάστημα από ότι στους 35°C. Αφενός δεν
υπάρχουν μεγάλες διαφορές μεταξύ θερμόφιλης και μεσόφιλης χώνευσης. Παρόλο που πραγματοποιείται γρηγορότερη βιοποδόμηση σε ψηλές θερμοκρασίες για απόβλητα ζώων, η παραγωγή του βιοαερίου είναι περίπου η ίδια.

Επειδή όμως για την μεσόφιλη χώνευση απαιτείται σημαντική ποσότητα θερμικής ενέργειας, είναι αποδεδειγμένο ότι η καθαρή παραγωγή ενέργειας των μεσόφιλων χωνευτών είναι χαμηλότερη από αυτή των ψυχρόφιλων χωνευτών. Εντούτοις, δεδομένου ότι συνήθως παράγεται περισσότερη ενέργεια από την αναγκαία για τη διατήρηση των μεσόφιλων θερμοκρασιών, η μεσόφιλη χώνευση αποτελεί την δημοφιλέστερη μέθοδο. Οι θερμόφιλες θερμοκρασίες εφαρμόζονται περισσότερο σε μεγαλύτερες κλίμακες κεντρικών εγκαταστάσεων.

Διαδικασία Αποδόμησης Οργανικής Ύλης

Η αναερόβια χώνευση αποτελείται από τέσσερα στάδια, την υδρόλυση, τη ζύμωση, την οξυγένεση και τη μεθανογένεση ως ακολούθως:

1. **Υδρόλυση.** Τα αδιάλυτα βιο-πολυµερή μετατρέπονται σε διαλυτές οργανικές ενώσεις.

2. **Ζύμωση.** Οι διαλυτές οργανικές ενώσεις μετατρέπονται σε πτητικά λιπαρά οξέα και διοξείδιο του άνθρακα.

3. **Οξυγένεση.** Τα λιπαρά οξέα μετατρέπονται σε οξικά άλατα και υδρογόνο.

4. **Μεθανογένεση.** Η μετατροπή του υδρογόνου και των οξικών αλάτων σε μεθάνιο και διοξείδιο του άνθρακα.

Στο καθένα από τα πιο πάνω στάδια, δραστηριοποιούνται οι αναγκαίοι μικροοργανισµοί για τη μεταβολή των ενώσεων. Μέσα από τη συµβιωτική λειτουργία των μικροοργανισµών, η οργανική ύλη μετατρέπεται περίπου σε:

- 50-60% μεθάνιο
- 38-48% διοξείδιο του άνθρακα και
- 2% άλλα αέρια, μέγιστο το οποίο είναι γνωστό ως βιοαέριο

Κατά το στάδιο της μεθανογένεσης, ο ρυθμός μετατροπής/διάσπασης της οργανικής ύλης είναι ανάλογος με το ρυθμό παραγωγής μεθανίου. Η δράση αναπτύσσεται παρουσία τουλάχιστον δέκα διαφορετικών ειδών βακτηρίων, το καθένα από τα οποία έχει περιορισμένη επίδρασή σε συγκεκριμένες μόνο οργανικές ουσίες. Παράλληλα, για αρκετές πολύπλοκες οργανικές ουσίες απαιτείται η συνεργασία και δράση πολλών διαφορετικών βακτηρίων για να επιτευχθεί η αποδόμηση τους και η παραγωγή μεθανίου.
Επίσης, μία βασική παράμετρος για την επιτυχή ανάπτυξη της διεργασίας είναι το γεγονός ότι ο ρυθμός αναπαραγωγής των μεθανογενών βακτηρίων είναι μικρότερος από αυτό των οξυγενών. Κατά συνέπεια, εάν για κάποιο λόγο διακοπεί το στάδιο της μεθανογένεσης, τότε είναι αρκετά δύσκολο να ξαναρχίσει.

Εικόνα 4-2. Στάδια Αναερόβιας Χώνευσης

Ιδιαίτερα σημαντική παράμετρος που πρέπει να ελέγχεται, είναι η παραγωγή αμμωνίας που είναι τοξική για τα μεθανογενή βακτήρια. Επίσης απαιτείται αυστηρός έλεγχος των συνθηκών αναερόβιας ζύμωσης για την πρόληψη δυσλειτουργιών λόγω των υψηλών συγκεντρώσεων στερεών στον αντιδραστήρα.

Η σταθεροποίηση του οργανικού φορτίου μπορεί να ανέλθει γύρω στο 90% μέσα από τη διεργασία της μετατροπής σε βιοαέριο. Η παραγόμενη ποσότητα βιοαερίου ποικίλλει ανάλογα με:

- Την ποσότητα και είδος του οργανικού φορτίου
- Τις επιδράσεις της θερμοκρασίας στο ρυθμό αποσύνθεσης.

Πλεονεκτήματα

Η μέθοδος υπό τις κατάλληλες συνθήκες αποτελεί κλειστό κύκλο άνθρακα, με αποτέλεσμα να μην συνεισφέρει στις εκπομπές διοξείδιο του άνθρακα. Η παραγωγή μεθανίου μπορεί να χρησιμοποιηθεί ως ανανεώσιμη πηγή ενέργειας.
Η πιο πάνω μέθοδος επίσης συμβάλλει στη μείωση:

- Των αποβλήτων
- Της οσμής
- Των παθογόνων μικροοργανισμών
- Τη διατήρηση των θερητικών στοιχείων στις στερεές ή και υγρές εκροές και
- Τη μείωση των εκπομπών αερίων του θερμοκηπίου

Μειονεκτήματα

Η αναεροβία χώνευση είναι μια ευαίσθητη διαδικασία. Κάτω από ασταθείς συνθήκες, μπορούν να παραχθούν ενδιάμεσες ενώσεις, ουσίες που μπορούν να προκαλέσουν περαιτέρω αστάθεια στην διαδικασία. Οι ισορροπία του συστήματος είναι η θερμοκρασία, το pH, η δομή και σύσταση του υποστρώματος και οι τοξίνες. Ως αποτέλεσμα, επηρεάζεται και η ποσότητα του παραγόμενου μεθανίου. Οι κυριότερες παράμετροι που διέχουν την αποτυχία στην αναεροβία χώνευση είναι:

- Μειωμένη παραγωγή μεθανίου
- Αυξημένη συγκέντρωση πτητικών λιπαρών οξέων και
- Μείωση του pH.

Έχει αποδειχθεί ότι με το συνδυασμό διάφορων ρευμάτων αποβλήτων μπορεί να βελτιωθεί η διεργασία της αναεροβίας χώνευσης. Η παραγωγή βιοαερίου και το περιεχόμενο της θερητικής αξίας μπορεί να βελτιωθεί ενισχύοντας την αξία του επεξεργασμένου αποβλήτου με την επιτυχή μίξη των διαφορετικών αποβλήτων.

4.1.2 Αερόβια Βιολογική Επεξεργασία - Λιπασματοποίηση

Η λιπασματοποίηση (Composting) ανήκει στις τεχνικές διαχείρισης στερεάς βιομάζας ενώ θεωρείται ως μία εκ των πλέον βιώσιμων τεχνικών λόγω του χαμηλού κόστους εγκαταστάσεων και εξοπλισμού που απαιτούνται. Πρόκειται για την ελεγχόμενη βιοξείδωση ετερογενών οργανικών υλικών. Η επεξεργασία αυτή πραγματοποιείται με τη βοήθεια ετερότροφων μικροοργανισμών (βακτήρια, μύκητες). Οι οργανισμοί αυτοί βιοαποδομούν τα οργανικά συστατικά παρουσία οξυγόνου. Απαιτούνται 2 kg O₂ για την αποδόμηση 1kg BOD, η οποία έχει ως αποτέλεσμα τη μείωση-σχεδόν την εξάλειψη του αζώτου. Προϊόν της λιπασματοποίησης είναι το compost (οργανικό λίπασμα), το οποίο είναι πλούσιο σε σταθεροποιημένη
οργανική υσία με υψηλό χουμικό περιεχόμενο. Το compost, ανάλογα με την ποιότητά του, μπορεί να χρησιμοποιηθεί ως:

1. Εδαφοβελτιωτικό υλικό
2. Υπόστρωμα για την καλλιέργεια φυτών
3. Βιολογικό φίλτρο
4. Ηχομονωτικό υλικό.

➢ Συστήματα Λιπασματοποίησης

Ανοικτά Συστήματα Λιπασματοποίησης

Τα ανοικτά συστήματα διακρίνονται ανάλογα με το εφαρμοζόμενο σύστημα αερισμού του υποστρώματος. Υπάρχουν τα συστήματα με δυναμικές συνθήκες αερισμού, τα συστήματα με στατικές συνθήκες και τα μικτά συστήματα αερισμού.

Συστήματα με δυναμικές συνθήκες αερισμού

Στα συστήματα αυτά, ο αερισμός του υποστρώματος γίνεται με εμφύσηση αέρα, με αναρρόφηση αέρα ή με εναλλαγή εμφύσησης και αναρρόφησης αέρα.

Συστήματα με στατικές συνθήκες

Στα συστήματα αυτά ο αερισμός γίνεται με τακτή ανάδευση του υποστρώματος και η λιπασματοποίηση γίνεται σε βιομηχανικά κτίρια

- Κλειστά Συστήματα Λιπασματοποίησης (In-Vessel Composters)

Βιοαντιδραστήρες, οριζόντιοι ή κάθετοι όπου το υλικό υφίσταται επεξεργασία υπό πλήρως ελεγχόμενες και αυτοματοποιημένες συνθήκες αερισμού, θερμοκρασίας και ύγρανσης. Τα συστήματα αυτά είναι τα πλέον αποτελεσματικά, όμως είναι σχετικά υψηλού κόστους επένδυσης και λειτουργίας.

- Μικτά Συστήματα Λιπασματοποίησης

Αποτελούν συνδυασμό των δύο προηγουμένων συστημάτων και εγκαθίστανται σε βιομηχανικά κτίρια.

Πρόκειται για συνδυασμό κλειστών και ανοικτών συστημάτων. Είναι πολύ αποδοτικά συστήματα που δεν προϋποθέτουν ιδιαίτερα υψηλό κόστος επένδυσης και λειτουργίας.

- Ωρίμανση Προϊόντος
Το υλικό μετά την λιπασματοποίηση οδηγείται στη μονάδα φρίμανσης. Εκεί λαμβάνουν χώρα διεργασίες σταθεροποίησης – χουμοποίησης των οργανικών συστατικών. Το στάδιο αυτό είναι απαραίτητο προκειμένου να είναι εφικτή η περαιτέρω χρήση του υλικού.

Εξευγενισμός του Compost

Στη μονάδα εξευγενισμού γίνεται ο καθαρισμός του compost από ξένες προσμιές. Για το σκοπό αυτό, εφαρμόζονται:

1. **Τεχνικές διαχωρισμού βάση μεγέθους**
 Χρήση είτε περιστρεφόμενων κόσκινων ή επίπεδων δονούμενων κόσκινων.

2. **Τεχνικές συνδυασμού βαλλιστικού διαχωρισμού και αεροδιαχωρισμού**
 Η ρευστοποίηση του υλικού γίνεται μέσω κεκλιμένης δονούμενης τράπεζας και ταυτόχρονης εμφύσης αέρα. Με την τεχνική αυτή επιτυγχάνεται ο διαχωρισμός του υλικού σε εξευγενισμένο compost, σε βαρύ κλάσμα, σε ελαφρύ κλάσμα και σε πολύ λεπτόκοκκο βαρύ κλάσμα.

3. **Τεχνικές μαγνητικού διαχωρισμού**
 Επιτυγχάνεται ο διαχωρισμός και η ανάκτηση των σιδηρούχων μεταλλών - περαιτέρω εξευγενισμό του compost.

4. **Τεχνικές επαγωγικών ρευμάτων**
 Επιτυγχάνεται ο διαχωρισμός των προσμιές του αλουμινίου - περαιτέρω εξευγενισμό του compost.

4.1.3 **Συνδυασμός Αναερόβιας Επεξεργασίας και Λιπασματοποίησης**

Υφίστανται συστήματα όπου λαμβάνει χώρα συνδυασμός αερόβιας και αναερόβιας βιολογικής επεξεργασίας. Το οργανικό υλικό υφίσταται αρχικά αναερόβια ζύμωση και στη συνέχεια αερόβια επεξεργασία – σταθεροποίηση, όπου προκύπτει χουμικό υλικό. Το τελικό προϊόν της συνδυασμένης επεξεργασίας παρουσιάζεται σύσταση και χαρακτηριστικά παρόμοια με αυτά που έχει το compost και μπορεί να χρησιμοποιηθεί σε γεωργικές εφαρμογές (εδαφοβελτιωτικά). Εναλλακτικά, μπορεί να αξιοποιηθεί ως καύσιμο υλικό. Στη συνέχεια παρουσιάζεται το διάγραμμα ροής μιας εγκατάστασης συνδυασμένης αναερόβιας - αερόβιας επεξεργασίας του οργανικού υλικού.
4.1.4 Αερόβια Βιολογική Επεξεργασία – Δραστική Λάσπη

Η αερόβια βιολογική επεξεργασία δραστικής λάσπης ανήκει στις τεχνικές διαχείρισης υγρών αποβλήτων, τόσο αστικών όσο και βιομηχανικών. Η μέθοδος είναι ιδιαίτερα αποτελεσματική στη μείωση του οργανικού φορτίου των λυμάτων με μειονέκτημα τις αυξημένες λειτουργικές ανάγκες σε ενέργεια.

Για την διευκόλυνση της αποδόσης και απομάκρυνσης των οργανικών ενώσεων που βρίσκονται διαλυμένα ή αερούμενα μέσα στα λύματα, δημιουργούνται κατάλληλες συνθήκες για την ανάπτυξη σαπροφυτικών οργανισμών, που χρησιμοποιούν μεταξύ άλλων το οργανικό υπόστρωμα των λυμάτων για σύνθεση νέων κυττάρων και παραγωγή της απαραίτητης ενέργειας. Οι σχετικές χημικές διεργασίες διευκολύνονται και επιταχυνούνται με την έκκριση από τους οργανισμούς διαφόρων ενζύμων που δρουν καταλυτικά και εξασφαλίζουν τη διάσπαση και μεταβολισμό των ουσιών. Η διαδικασία μπορεί να είναι αερόβια ή αναερόβια όπως περιγράφηκε σε προηγούμενο κεφάλαιο.

Στην αερόβια βιοαποδόση ελευθερώνεται σημαντική ποσότητα ενέργειας ανά μονάδα υποστρώματος από τη μετατροπή του οργανικού άνθρακα, με αποτέλεσμα να προωθείται η σύνθεση κυτταρικού υλικού και η ανάπτυξη πολυάριθμων οργανισμών. Η αερόβια επεξεργασία είναι πολύ ταχύτερη από την αναερόβια, με κύρια προϊόντα CO2, H2O και NO3 και με ορισμένα μη διασπάσιμα οργανικά υλικά, καθώς και με υπολειμματικό οργανικό κυτταρικό υλικό. Στην αρχή παράγονται νέα κύτταρα αλλά όταν συνεχίζεται ο αερισμός ένα μέρος αυτών των κυττάρων καταστρέφονται κατά την ενδογενή αναπνοή (αυτό-οξείδωση).
Χαρακτηριστική παράμετρος υπολογισμού για τις εγκαταστάσεις αερόβιας επεξεργασίας είναι ο λόγος της τροφής, δηλαδή των οργανικών ουσιών και των μικροοργανισμών, δηλαδή U=F/M. Στην πράξη ο λόγος υπολογίζεται βάσει του BOD₃ των εισαγόμενων λυμάτων, που εκφράζει τις οργανικές ουσίες (τροφή) και των αιρόμενων ή πτητικών στερεών του μικτού υγρού της δεξαμενής αερισμού (MLSS ή MLVSS) που σχετίζεται έμμεσα με τα μικρόβια. Η χρήση του MLVSS δίνει καλύτερη προσέγγιση της μάζας των μικροοργανισμών καθώς εξαρτάται από ανόργανα συστατικά. Οι μονάδες αερισμού λειτουργούν αποδοτικά μέσα σε συσμένα όρια τιμών του λόγου F/M, που ρυθμίζονται με την παροχή της τροφής. Υψηλός ρυθμός τροφοδοσίας προκαλεί πρόβλημα στην καθίζηση της λάσπης και στην πράξη δεν εφαρμόζεται.

Η μέθοδος τη δραστικής λάσπης αναπτύχθηκε αρχικά στην Αγγλία και ονομάστηκε έτσι λόγω της παραγωγής δραστικής μάζας (λάσπης) από μικροοργανισμούς, που έχει την ικανότητα της αερόβια σταθεροποίησης των αποβλήτων. Τα λύματα υποβάλλονται σε αερόβια σταθεροποίηση με τη συνεχή παροχή αέρα (οξυγόνου), είτε με αεραντίες (διάχυση), είτε με μηχανική επιφανειακή ανάδειξη. Σημαντική για την αποδόση των οργανικών ενώσεων, είναι η δημιουργία από τα βακτήρια, ύστερα από ορισμένο χρόνο (3-4 ημέρες) εξωτερικά του κυττάρου, ξελατινώδεις υμένα (ζωόγλοια) που με τις συγκολλητικές της ιδιότητες συμβάλλει στην συνένωση των λεπτών και κολλοειδών μορίων και στο σχηματισμό είδους βιολογικών κροκούδων, που διευκολύνουν την καθίζηση. Οι κροκόδες αποτελούν τους δραστικούς πυρήνες προσφορής, αφομοιώσεως και αποδομής των οργανικών ουσιών. Οι κροκόδες αυτές θα πρέπει να διατηρούνται πάντα σε αιώρηση μέσα στον αντιδραστήρα με τη βοήθεια των φυσαλίδων του αέρα ή της ανάμιξης.

Η καθίζηση των κροκόδων λαμβάνει χώρα στη δεξαμενή καθίζησης που βρίσκεται στην έξοδο της δεξαμενής αερισμού. Για την εξασφάλιση του επιθυμητού μικροβιακού πληθυσμού στο μικτό υγρό γίνεται πάντα ανακυκλώφορα μέρους της δραστικής λάσπης από την δεξαμενή καθίζησης πίσω στη δεξαμενή αερισμού. Ο ρυθμός ανακύκλωσης είναι συνήθως της τάξης του 25-50% αλλά μπορεί να αλλάξει ανάλογα με τις συνθήκες λόγου F/M που λειτουργεί το σύστημα. Η ανακυκλώφορα ανεξάρτητο το χρόνο παραμονής της δραστικής λάσπης (ηλικία λάσπης) και την αντίστοιχη συγκέντρωση αιωρούμενων στερεών στο μικτό υγρό. Σε συμβατικό σύστημα δραστικής λάσπης η παραγόμενη περίσσεια λάσπης (ζωοντανοί μικροοργανισμοί) είναι 0,55-0,65 Kg ανά Kg BOD₃ που απομακρύνεται.

Μέθοδοι Δραστικής Λάσπης

Η μέθοδος της δραστικής λάσπης παρουσιάζει μεγάλη ευλυγισία και δυνατότητα προσαρμογής, με αποτέλεσμα την ανάπτυξη διαφόρων παραλλαγών της διεργασίας. Αυτές οι διαφοροποιήσεις αναλύονται παρακάτω.

- **Συμβατική Μέθοδος**
Αποτελείται από τη δεξαμενή αερισμού, τη δεξαμενή καθίζησης και τη γραμμή επιστροφής της δραστικής λάσπης (25-50%), ενώ η περίσσεια λάσπης οδηγείται συνήθως στη δεξαμενή χωνεύσεως καθώς περιέχει σημαντική ποσότητα οργανικών και ανόργανων μη σταθεροποιημένων ουσιών. Η ρόη στη δεξαμενή αερισμού είναι κατά προσέγγιση εμβολική, με χρήση διαχωριστικών που οδηγούν το λύμα. Η επιστροφή της λάσπης γίνεται στην αρχή του αντιδραστήρα όπου αναμιγνύεται με το λύμα και αερίζεται σταθερά και ομοιόμορφα για 4-8 ώρες σε άλλη μικτό υγρό. Μειονέκτημα της συμβατικής μεθόδου από άποψη αερισμού είναι ότι η παροχή αέρα είναι σταθερή σε όλο το μήκος της δεξαμενής ενώ η ζήτηση από τους μικροοργανισμούς ελαττώνεται καθώς λιγοστεύει τη τροφή.

- **Μειούμενος Αερισμός**

Η μέθοδος αυτή είναι τροποποιημένη της συμβατικής, με σκοπό την προσαρμογή του αερισμού στις συνθήκες ζήτησης κατά μήκος της δεξαμενής. Η ζήτηση μειώνεται εκθετικά καθώς η διαθέσιμη τροφή ελαττώνεται.

- **Καθολική Ανάμιξη**

Κατά τη μέθοδο αυτή επιδιώκεται η ομοιόμορφη διασπορά του μικτού υγρού σε όλο τον όγκο του αντιδραστήρα, ώστε το οργανικό φορτίο και η ζήτηση οξυγόνου να είναι σταθερά σε όλη τη δεξαμενή. Η μέθοδος επιτρέπει σχεδόν το διπλασιασμό του φορτίου 4-8 αυτή της συμβατικής μεθόδου. Το μικτό υγρό υφίσταται ομοιόμορφη καθολική ανάμιξη καθώς κινείται από το κεντρικό αυλάκι εισαγωγής στα αυλάκια εκροής στις δύο πλευρές της δεξαμενής.

- **Επαφή - Σταθεροποίηση**

Η απομάκρυνση του BOD στη μέθοδο αερίβιας επεξεργασίας γίνεται σε δύο στάδια: Στο πρώτο στάδιο, που διαρκεί 20-40 λεπτά, τα περισσότερα από τα λεπτά αιωρούμενα, τα κολλοειδή και τα διαλυμένα οργανικά προσφέρονται από την δραστική λάσπη, ενώ κατά το δεύτερο αφομοιώνονται και οξειδώνονται σε χρονική διάρκεια 3-6 ωρών. Στη συμβατική μέθοδο τα δύο αυτά στάδια πραγματοποιούνται στην ίδια δεξαμενή, ενώ στην επαφή-σταθεροποίηση οι δύο φάσεις διαχωρίζονται και γίνεται σε διαφορετικές δεξαμενές.

Με τη μέθοδο αυτή ο απαιτούμενος όγκος αερισμού είναι περίπου 50% της συμβατικής και είναι δυνατός ο διπλασιασμός της δυναμικότητας της μονάδας. Η μέθοδος είναι αποτελεσματική για αστικά λύματα και για βιομηχανικά λύματα θα πρέπει να προηγηθεί εργαστηριακός έλεγχος. Γενικά δεν δίνει ικανοποιητικά αποτελέσματα εάν τα απόβλητα παρουσιάζουν ανεξήμενη συγκέντρωση διαλυμένων οργανικών. Η μέθοδος συνδυάζεται με αντιδραστήρα εμβολικής ανάμιξης.

- **Υψηλός Ρυθμός Αερισμού**

Η παράλλαγη αυτή της συμβατικής μεθόδου συνδυάζει υψηλό οργανικό φορτίο, περίπου τριπλάσιο το συμβατικό, με υψηλή συγκέντρωση λάσπης στο μικτό υγρό. Ο συνδυασμός επιτρέπει τελικά ψηλές τιμές
του λόγου F/M (0,4- 1,5) με μεγάλο διάστημα παραμονής των μικροβίων (ηλικία λάσπης) και ταυτόχρονα
περιορισμένο χρόνο συγκράτησης των υγρών (0,5-2 ώρες) ώστε να μην αυξάνει πολύ ο όγκος της δεξαμενής
αερισμού. Η μέθοδος απαιτεί έντονη ανάμιξη στον αντιδραστήρα για τη μεταφορά του οξυγόνου και τον
έλεγχο του μεγέθους των κροκύδων. Η μέθοδος συνδυάζεται με αντιδραστήρα καθολικής ανάμιξης.

• Παρατεταμένος Αερισμός

Κατά τη μέθοδο αυτή γίνεται παρατεταμένος αερισμός (24 ώρες και περισσότερο) με αποτέλεσμα η
διαδικασία αναπτύξεως των μικροοργανισμών να μπαίνει σε ενδογενή φάση και η τελική λάσπη να είναι σε
σημαντικό βαθμό οξειδωμένη, ώστε να μην χρειάζεται άλλη επεξεργασία σταθεροποίησης. Είναι δυνατό η
πλευροπήλωση λάσπη να μην αφαιρείται συνεχώς αλλά να συγκεντρώνεται σε σημαντικές ποσότητες (μέχρι
MLSS=10.000 mg/l) και να αφαιρείται περιοδικά. Το σύστημα είναι ιδιαίτερα σταθερό και δέχεται
dιακυμάνσεις στο φορτίο χωρίς να αστοχεί.

Πίνακας 4-1. Ενδεικτικές τιμές λειτουργίας μεθόδων δραστική λάσπης

<table>
<thead>
<tr>
<th>Διεργασία</th>
<th>Χρόνος Αερισμού (hr)</th>
<th>Φορτίο (KgBOD₅/m³)</th>
<th>Ρυθμός Ανακυκλοφορίας</th>
<th>Ηλικία Λάσπης (d)</th>
<th>MLSS (1000mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Συμβατική</td>
<td>6-7,5</td>
<td>0,48-0,64</td>
<td>0,25-0,5</td>
<td>5-15</td>
<td>1,5-3</td>
</tr>
<tr>
<td>Υψηλός Ρυθμός</td>
<td>2,5-3,5</td>
<td>1,6+</td>
<td>1-5</td>
<td>5-10</td>
<td>4-10</td>
</tr>
<tr>
<td>Τμηματικός Αερισμός</td>
<td>5-7</td>
<td>0,48-0,8</td>
<td>0,25-0,75</td>
<td>5-15</td>
<td>2-3,5</td>
</tr>
<tr>
<td>Επαφή-Σταθεροποίηση</td>
<td>6-9</td>
<td>0,48-0,8</td>
<td>0,25-1</td>
<td>5-15</td>
<td>1-3</td>
</tr>
<tr>
<td>Παρατεταμένος Αερισμός</td>
<td>20-30</td>
<td>0,16-0,48</td>
<td>0,75-1,5</td>
<td>20-30</td>
<td>3-6</td>
</tr>
</tbody>
</table>

4.1.5 Σύγκριση Αερόβιας και Αναερόβιας Επεξεργασίας
Στην επιλογή βιοεπεξεργασίας των οργανικών αποβλήτων σημαντικό ρόλο παίζει ο στόχος της επεξεργασίας και η δυνατότητα διάθεσης των προϊόντων, η οποία θα πρέπει να εξετάζεται από τα αρχικά στάδια του σχεδιασμού. Η τελική επιλογή μεταξύ αερόβιας και αναερόβιας χώνευσης εξαρτάται σημαντικά από το είδος των αποβλήτων.

Το βασικό πλεονέκτημα της μεθόδου αναερόβιας επεξεργασίας είναι η ανάκτηση ενέργειας, υπό μορφή μεθανίου. Επίσης πλεονέκτημα είναι η μείωση του όγκου και του βάρους των αποβλήτων, η βιολογική σταθεροποίησή τους, και η πιθανή ανάκτηση θρεπτικών μέσω της χρήσης του παραγόμενου υπολείμματος ως εδαφοβελτιώτικου. Η αναερόβια επεξεργασία είναι περισσότερο αποτελεσματική για λίματα με υψηλό περιεχόμενο στερεών και αυξημένο ποσοστό σε λίπη. Γενικά, είναι μια τεχνοοικονομική βιώσιμη λύση καθώς παράγει σημαντικό εισόδημα από την αξιοποίηση του βιοαερίου προς παραγωγή ενέργειας.

Η αερόβια βιολογική επεξεργασία δραστικής λάσπης ανήκει στις τεχνικές διαχείρισης υγρών αποβλήτων, τόσο αστικών όσο και βιομηχανικών. Η μέθοδος είναι ιδιαίτερα αποτελεσματική στη μείωση του οργανικού φορτίου των λιματών με μειονέκτημα τις αυξημένες λειτουργικές ανάγκες σε ενέργεια. Η απόδοση της τεχνικής φτάνει το 95% σε BOD₃ και κατά κανόνα το τελικό καθαρισμένο νερό είναι κατάλληλο για αρδευτική χρήση. Εκτός του οργανικού φορτίου σημαντικό πλεονέκτημα είναι η αφαίρεση του αξιόπιντου από τα λίματα κάτι που δε συμβαίνει στον ίδιο βαθμό με την αναερόβια επεξεργασία. Η συμβατική μέθοδος προτιμάται στη διαχείριση λιματών χαμηλού οργανικού φορτίου γιατί σε αντίθετη περίπτωση απαιτείται η κατασκευή μεγάλων δεξαμενών και αυξάνεται απαγορευτικά το κόστος αερισμού. Γενικά το κόστος κατασκευής μονάδας δραστικής λάσπης είναι χαμηλότερο σε σχέση με την αναερόβια.

Η λιπασματοποίηση (αερόβια επεξεργασία) εφαρμόζεται μόνο σε στερεά απόβλητα και όχι σε λίματα. Βρίσκει εκτεταμένη εφαρμογή στην διαχείριση κτηνοτροφικών αποβλήτων κυρίως όπως στην πτηνοτροφεία. Σχεδόν πάντα η μέθοδος είναι επικουρική και συνδυάζεται με την αναερόβια ή τη μέθοδο της δραστικής λάσπης για τη παραπέρα σταθεροποίηση της λάσπης που προκύπτει.

Η λιπασματοποίηση οδηγεί στη παραγωγή ενός σταθεροποιημένου εδαφοβελτιώτικου, του κομπόστ. Είναι αποτελεσματικότερη για την επεξεργασία αποβλήτων με υψηλό περιεχόμενο λιγνίνης διότι τα αναερόβια βακτήρια παρουσιάζουν μειωμένη ικανότητα βιοδιάσπασης της εν λόγω ουσίας. Το κομπόστ μπορεί να χρησιμοποιηθεί σε ένα μεγάλο εύρος αγροτικών και θηριοκτητικών εφαρμογών, και μπορεί να περιορίσει τη διάβρωση του εδάφους, να βελτιώσει τη δομή και την υδατο-ικανότητα του εδάφους, να περιορίσει την ανάγκη χρήσης λιπασμάτων και να συμβάλει στον έλεγχο φυτοπαθογόνων οργανισμών.
4.2 Επιλογή Μεθόδου Βιολογικής Επεξεργασίας

Λόγοι που καθορίζουν την επιλογή της μεθόδου βιολογικής επεξεργασίας σε σύγκριση με τις υπόλοιπες μεθόδους:

Η αερόβια βιολογική επεξεργασία:
✓ Εξασφαλίζει μείωση του όγκου των απορριμμάτων που οδηγούνται προς τελική διάθεση.
✓ Μειώνει το ρυπαντικό φορτίο του στερεού υπολείμματος που οδηγείται προς ταφή.
✓ Περιορίζει τα παθητικά ουσιώδη της θέρμανσης και της επικολλητικότητας των υλικών.
✓ Είναι δυνατή η διακοπτόμενη λειτουργία των μονάδων.

Η αναερόβια βιολογική επεξεργασία:
✓ Τεχνοοικονομική βιωσιμότητα
✓ Παράγει περισσότερο βιοαέριο και κατ’ επέκταση αυξημένη ενέργεια.
✓ Πραγματοποιείται με τη βοήθεια μικροοργανισμών, απουσία οξυγόνου.

4.3 Τύποι Αντιδραστήρων

Οι βιοαντιδραστήρες χώνευσης της βιομάζας μπορεί να είναι συνεχούς ή διαλείποντος έργου. Για τη διατήρηση σταθερής θερμοκρασίας είναι απαραίτητη η ποιότητα και πιθανώς η θέρμανση του βιοαντιδραστήρα. Τα υγρά απόβλητα που απομένουν έχουν χαμηλό ρυπαντικό φορτίο και είναι σχετικά σταθεροποιημένα, περιέχουν όμως παθογόνους μικροοργανισμούς.

4.3.1 Αντιδραστήρας CSTR (Continuously Stirred Tank Reactor)

Οι αντιδραστήρες CSTR (Continuously stirred tank reactors CSTR) χαρακτηρίζονται ως οι πρώτοι αντιδραστήρες αναερóbιας επεξεργασίας. Οι CSTR χρησιμοποιούνται εκτενώς για την αναερόβια χώνευση αποβλήτων που παρουσιάζουν υψηλές συγκέντρωσεις στερεών όπως οι βιολογικές λάσπες. Ο χρόνος παραμονής των προς επεξεργασία αποβλήτων, σε αυτού του τύπου αντιδραστήρες εξαρτάται από το είδος των μικροοργανισμών με τον αργότερο ρυθμό ανάπτυξης. Για να επιτευχθούν αποδοτικά επίπεδα αποδόσεις επιβάλλεται σχετικά μεγαλύτερος χρόνος παραμονής των αποβλήτων, σε σχέση με άλλους αντιδραστήρες, που συχνά ξεπερνά τις 25 ημέρες. Το γεγονός αυτό καθιστά προβληματική τη χρήση αντιδραστήρων CSTR για επεξεργασία αποβλήτων χαμηλού ρυπαντικού φορτίου.
Εικόνα 4-4. Αναερόβιος αντιδραστήρας πλήρους ανάδευσης

Για να αυξηθεί ο χρόνος παραμονής των ενεργών αιφνιδιασμένων στερεών (μικροβιακοί οργανισμοί), οι αντιδραστήρες πλήρους ανάδευσης εξελίχθηκαν σε αντιδραστήρες πλήρους ανάδευσης με ανακυκλοφορία της λάσπης (Anaerobic contact process). Σε αυτή την περίπτωση η βιολογική λάσπη που απομακρύνεται μαζί με το επεξεργασμένο απόβλητο, διαχωρίζεται σε δεξαμενή καθίζησης και επιστρέφει στον κύριο αναερόβιο χονευτήρα. Παρόλα αυτά η μέγιστη συγκέντρωση της βιομάζας που μπορεί να επιτευχθεί σε αυτά τα συστήματα δεν ξεπερνά τα 4-6Kgm⁻³. Η σχετική αυτή χαμηλή συγκέντρωση, της βιομάζας, έχει ως αποτέλεσμα να μην διαθέτει καλά χαρακτηριστικά καθίζησης, κυρίως λόγω του σχηματιζόμενου βιοαερίου στη δεξαμενή καθίζησης.

Εικόνα 4-5. Αναερόβιος χονευτήρας πλήρους ανάδευσης με ανακυκλοφορία της λάσπης

Η τεχνολογία αυτή έχει πολύ περιορισμένη εφαρμογή για την επεξεργασία βιομηχανικών αποβλήτων. Αντίθετα για αποτελεί μια ικανοποιητική λύση για επεξεργασία αποβλήτων που περιέχουν υψηλές συγκέντρώσεις αιφνιδιασμένων στερεών και/ή λιπών.
4.3.2 Αντιδραστήρας UASB (Upflow Anaerobic Sludge Blanket)

Ο αντιδραστήρας UASB (ανοδικής ροής στιβάδας ανόργανης υλώς) αναπτύχθηκε από τον καθηγητή Gatze Lettinga και τους φοιτητές του στο Πανεπιστήμιο Wageningen της Ολλανδίας, στα τέλη της δεκαετίας του ’70. Ο συγκεκριμένος τύπος αντιδραστήρας έχει τη δυνατότητα διαχείρισης ποικίλων βιομηχανικών και οικιακών αποβλήτων και τυγχάνει εκτεταμένης χρήσης ανά το παγκόσμιο, αφού το 72% των αντιδραστήρων βασίζεται σε UASB τεχνολογία.

Εικόνα 4-6. Αναερόβιος αντιδραστήρας τύπου UASB

Ο αντιδραστήρας UASB είναι τύπος αναερόβιου αντιδραστήρα, με ανοδική ροή του αποβλήτου. Το υγρό απόβλητο εισάγεται στον πυθμένα του αντιδραστήρα και με εξαναγκασμένη ανοδική ροή (upflow) διέρχεται μέσα από στιβάδα υλώς. Η εν λόγω στιβάδα περιέχει μικτή καλλιέργεια αναεροβικών μικροοργανισμών σε αιώρηση. Η σπουδαιότητα της υλώς έγκειται στη μετατροπή του οργανικού υποστρώματος σε μεθάνιο και διοξείδιο του άνθρακα.

Η τεχνολογία των συγκεκριμένων αντιδραστήρων, σύμφωνα με το Lim(2003), έγκειται στη συσσωμάτωση της μικροβιακής μάζας, που δημιουργεί μια κοκκόδια υλώς με αυξημένη οριακή ταχύτητα καθίζησης. Υπό την επίδραση της βαρύτητας, η κοκκόδια υλώς κατακάθεται στον πυθμένα του αντιδραστήρα και σχηματίζει μια κλίνη υλώς. Η συγκέντρωση της υλώς στην κλίνη είναι υψηλή και ανέρχεται στα 80 kg SS.m⁻³ και παραμένει αδιαφοροποιητή για μεγάλο εύρος λειτουργικών συνθηκών.

Οπως επισημαίνει ο Ghangrekar, για να παραταθεί η διάρκεια παραμονής του αποβλήτου στην κλίνη υλώς και να αποτραπεί η υπερβολική συμπύκνωση της υλώς, ένα ρεύμα επεξεργασμένου αποβλήτου οδηγείται εκ νέου στον πυθμένα της δεξαμενής. Ετσι η συνολική ταχύτητα ανοδικής ροής του υγρού αποβλήτου...
διατηρείται μεταξύ 1 και 2 m.h⁻¹. Εφόσον επιτευχθεί η επιθυμητή κοκκόδημη μορφή της ύλος, τότε δεν παρασύρεται από την ανοδική ροή και παραμένει στον αντιδραστήρα. Κατά την αποδόμηση του οργανικού υποστρώματος, παράγεται νέα μικροβιακή μάζα που είτε δημιουργεί νέους κόκκους, είτε συσσωματώνεται στους υφιστάμενους.

Οι αντιδραστήρες UASB φέρουν στην κορυφή τους διαχωριστήρα τριών φάσεων, ο οποίος επιτελεί τις κάτωθι σημαντικές λειτουργίες:

- Συλλέγει, διαχωρίζει και απομακρύνει το παραγόμενο βιοσέρριο.
- Δρα περιοριστικά στη διαστολή της κλίνης ύλος.
- Περιορίζει τις αναταράξεις του υγρού κλάσματος, που συνιστούν απόρροια της παραγωγής αερίου στην περιοχή καθίζησης.
- Αποτρέπει την έκπληξη και τη συνακόλουθη διαφυγή ύλος από το σύστημα.

Προκειμένου να βελτιστοποιηθεί η απόδοση και η σταθερότητα της διεργασίας, ο αντιδραστήρας θα πρέπει να διαστασιολογηθεί και να σχεδιασθεί σύμφωνα με τις ακόλουθες παραμέτρους:

- Η συγκέντρωση βιομάζας στον αντιδραστήρα επιδιώκεται όπως είναι κατά το δυνατό υψηλότερη.
- Η βιολογική ενεργότητα της ύλος επιδιώκεται όπως είναι κατά το δυνατό υψηλότερη, η οποία συναρτάται της ποσότητας των περιεχόμενων στην ύλη μικροοργανισμών.
- Ο χρόνος παραμονής της ύλος θα πρέπει να κυμαίνεται μεταξύ 10 και 20 ημερών για τα μεθανογενή βακτήρια.
- Ο χρόνος παραμονής του υγρού στον αντιδραστήρα επιδιώκεται όπως μειωθεί.

Ο αντιδραστήρας UASB συνιστά πρόσφορη τεχνολογία για την επεξεργασία βαρέων οργανικών αποβλήτων, αφενός μεν λόγω της υψηλής συγκέντρωσης βιομάζας που διαθέτει και αφετέρου λόγω της πλούσιας μικροβιακής πυκνότητας. Η υψηλή συγκέντρωση βιομάζας συνεπειά στην ταχεία μεταφορά των ρυπαντικών και ως εκ τουτού καθίσταται δυνατή η επεξεργασία αποβλήτων είτε υψηλών συγκέντρωσεων, είτε μεγάλων όγκων, εντός αντιδραστήρων περιορισμένου μεγέθους.

Ένα σύνθετο πρόβλημα των αντιδραστήρων UASB είναι η αποδιοργάνωση/διάσπαση της ύλος και η έκπληξη της από το σύστημα. Οι Schmidt & Ahring (1996) επισημαίνουν πως το συγκεκριμένο φαινόμενο οφείλεται στην υδατολική τάση που αναπτύσσουν οι κόκκοι. Επίσης, η αύξηση της οργανικής φόρτισης, προκαλεί γραμμική μείωση της αντοχής των κόκκων αναερόβιας ύλος, γεγονός που επιδρά αρνητικά στη
σταθερότητα της δομής των κόκκων. Οι κόκκοι υλώς μειωμένης αντοχής, χάνουν εύκολα τη δομή τους και
dιασπώνται.
Μείζον μειονέκτημα των αντιδραστήρων UASB θεωρείται η παρατητική στιγμιαία ανάπτυξης
tων κόκκων αναεροβίας υλώς, γεγονός που μεταδένει χρονικά την εκκίνηση της κανονικής λειτουργίας του
συστήματος κατά 2 8 8 μήνες. Επιπρόσθετα, η ανάπτυξη των μεθανογενών οργανισμών καθυστερεί
σημαντικά όταν στον αντιδραστήρα επικρατούν θερμοκρασίες μικρότερες των 30 °C.

4.3.3 Αντιδραστήρας Plug Flow

Οι αντιδραστήρες εμβολικής ροής (plug flow) θεωρούνται κατάλληλοι για τη διαχείριση μεγάλου όγκου
αποβλήτων. Χρησιμοποιούνται για την επεξεργασία υγρών και αέριων αποβλήτων, αλλά και για τη
διαχείριση κοπριάς.

Οι αντιδραστήρες εμβολικής ροής τυγχάνουν ευρείας χρήσης σε περιπτώσεις:
- αντιδράσεων μεγάλης κλίμακας
- ταχέων αντιδράσεων
- ομογενών και ετερογενών αντιδράσεων
- αντιδράσεων συνεχούς παραγωγής
- ιδιαίτερα εξόπλισμα αντιδράσεων

Οι συγκεκριμένοι αντιδραστήρες χαρακτηρίζονται από υψηλή αποδοτικότητα, αφού διαχειρίζονται τα
εισερχόμενα απόβλητα παράγοντας υψηλότερο ποσοστό οψίλων και αξιοποιήσιμων προϊόντων, συγκριτικά με
tους αντιδραστήρες CSTR. Το δέ κόστος λειτουργίας είναι χαμηλό. Ο ρυθμός διάδοσης –
μεταφοράς θερμότητας δύναται να βελτιστοποιηθεί είτε με τη χρήση λεπτότερων ή λιγότερων σωλήνων, είτε
με τη χρήση σωλήνων μεγαλότερης διαμέτρου, συνδεδεμένων όμως εν παραλλήλω.

Το κατεξοχήν μειονέκτημα των αντιδραστήρων εμβολικής ροής είναι η δυσκολία ελέγχου των
θερμοκρασιών που αναπτύσσονται εντός του αντιδραστήρα. Η θεωρείται η συντήρηση των αντιδραστήρων εμβολικής
ροής είναι πιο δαπανηρή εν συγκρίσει με τη συντήρηση των αντιδραστήρων συνεχούς ανάδειξης CSTR.
Ωστόσο οι αντιδραστήρες plug flow λειτουργούν επί μακρά χρονικά διαστήματα χωρίς να απαιτείται
οποιαδήποτε συντήρηση τους. Σε εφαρμογές όπου οι μικροβιακοί οργανισμοί αυξάνονται εκθετικά, τότε
προτιμούνται αντιδραστήρες CSTR συγκριτικά με τους αντιδραστήρες plug flow.
4.4 Αποτέφρωση

Η αποτέφρωση-καύση (incineration) των στερεών αποβλήτων είναι η ένωση με το οξυγόνο των χημικών στοιχείων που περιέχονται σε αυτά, δηλαδή η οξείδωσή τους. Αυτό γίνεται με χρήση είτε της απαιτούμενης στοιχειομετρικής ποσότητας αέρα (stoichiometric combustion) είτε με περίσσεια αέρα (excess-air combustion). Κοπός της αποτέφρωσης είναι η ελάττωση του όγκου των απορριμμάτων και η εκμετάλλευση της παραγόμενης ενέργειας.

Για την επίτευξη πλήρους καύσης των αποβλήτων πρέπει να τηρούνται τα πιο κάτω:

- Επαρκής ποσότητα καύσιμου υλικού και οξειδωτικού μέσου (O2) στην εστία καύσης
- Επίτευξη της επιθυμητής θερμοκρασίας ανάφλεξης
- Σωστή αναλογία δίχτυων (καύσιμος - άνθρακα - οξυγόνο)
- Συνεχής απομάκρυνση των αερίων που παράγονται κατά την καύση
- Συνεχής απομάκρυνση των υπολείμματων της καύσης

Κατά την καύση λαμβάνουν χώρα οι εξής φυσικές και χημικές διεργασίες:

- Ξήρανση – επιτυγχάνεται με την έκθεση τους σε θερμοκρασία 100ºC. Η θερμότητα που απαιτείται για την ξήρανση εξαρτάται από τη σύνθεση των απορριμμάτων και από την περιεκτικότητα τους σε υγρασία.
- Θερμική διάσπαση των οργανικών ενώσεων – απομακρύνονται τα πτητικά υλικά σε θερμοκρασίες 250-900 ºC.
- Απαερίωση – μετατροπή ανθρακούχων υλικών σε αέριο καύσιμο υλικό σε θερμοκρασίες 800-1150 ºC. Σε περίπτωση υπέρβασης των 1150 ºC δημιουργείται πρόβλημα από την τήξη της τέφρας και το κόλλημα των εσχάρων.
- Κύρια καύση – περιλαμβάνει την πλήρη οξείδωση των αποβλήτων σε νερό (H2O), διοξείδιο του άνθρακα (CO2), οξείδια του θείου και του αζώτου (SOx, NOx)

Τα προϊόντα της αποτέφρωσης είναι τα ακόλουθα:

- Απαέρια (με υδρατµούς) – είναι κατάλληλα για τη διάθεση τους στην ατµόσφαιρα μετά τον καθαρισµό τους.
- Ανόργανη τέφρα – με περαιτέρω επεξεργασία της μπορεί να γίνει ανάκτηση υλικών και η τελικά προκύπτουσα τέφρα χρησιμοποιείται ως αδρακές υλικό για δομικές χρήσεις, είτε οδεύει προς υγειονοµική ταφή.
Υγρό απόβλητο – αποτέλεσμα των διαδικασιών σβέσης της τέφρας και ψύξης των αερίων.

Θερμότητα – μπορεί να χρησιμοποιηθεί για την παραγωγή ατμού ή ηλεκτρικής ενέργειας.

Η αποτέφρωση-καύση (incineration) των στερεών αποβλητών είναι η ένωση με το οξυγόνο των χημικών στοιχείων που περιέχονται σε αυτά, δηλαδή η οξείδωση τους. Αυτό γίνεται με χρήση είτε της απαιτούμενης στοιχειομετρικής ποσότητας αέρα (stoichiometric combustion) είτε με περίσσεια αέρα (excess-air combustion). Κοπός της αποτέφρωσης είναι η ελάττωση του όγκου των απορριμμάτων και η εκμετάλλευση της παραγόμενης ενέργειας.

Για την επίτευξη πλήρους καύσης των αποβλητών πρέπει να τηρούνται τα πιο κάτω:

- Επαρκής ποσότητα καύσιμου υλικού και οξειδωτικού µέσου (O2) στην εστία καύσης
- Επίτευξη της επιθυμητής θερμοκρασίας ανάφλεξης
- Σωστή αναλογία µίγµατο (καύσιµης υλής-οξυγόνου)
- Συνεχής απομάκρυνση των πετρελαϊκών αερίων τα οποία παράγονται κατά την καύση
- Συνεχής απομάκρυνση των υπολειµµάτων της καύσης

Κατά την καύση λαμβάνουν χώρα οι εξής φυσικές και χημικές διεργασίες:

- Ξήρανση – επιτυγχάνεται µε την έκθεση τους σε θερμοκρασία 100ºC. Η θερημότητα που απαιτείται για την ξήρανση εξαρτάται από την σύνθεση των απορριµµάτων και από την περιεκτικότητα τους σε υγρασία.
- Θερμική διάσπαση των οργανικών ενώσεων – αποµάκρυνονται τα πτητικά υλικά σε θερμοκρασίες 250-900 ºC.
- Απαερίωση – µετατροπή ανθρακούχων υλικών σε αέριο καύσιµο υλικό σε θερμοκρασίες 800-1150 ºC. Σε περίπτωση υπέρβασης των 1150 ºC δηµιουργείται πρόβληµα από την τήξη της τέφρας και το κόλληµα των εσχάρων.
- Κύρια καύση – περιλαµβάνει την πλήρη οξείδωση των αποβλητών σε νερό (H2O), διοξείδιο του άνθρακα (CO2), οξείδια του θείου και του αζώτου (SOx, NOx)

Τα προϊόντα της αποτέφρωσης είναι τα ακόλουθα:

- Απαέρια (µε υδρατµός) – είναι κατάλληλα για τη διάθεσή τους στην ατμόσφαιρα µετά τον καθαρισµό τους.
- Ανόργανη τέφρα – µε περαιτέρω επεξεργασία της µπορεί να γίνει ανάκτηση υλικών και η τελικά προκύπτουσα τέφρα χρησιµοποιείται ως αδρανές υλικό για δοµικές χρήσεις, είτε οδεύει προς υγειονοµική ταφή.
✓ Υγρό απόβλητο – αποτέλεσμα των διαδικασιών σβέσης της τέφρας και ψύξης των αερίων.
✓ Θερμότητα – μπορεί να χρησιμοποιηθεί για την παραγωγή ατμού ή ηλεκτρικής ενέργειας.

4.4.1 Μέθοδοι Αποτέφρωσης

Οι μονάδες αποτέφρωσης κατατάσσονται σε δύο κύριες κατηγορίες, τις μονάδες που απαιτούν ελάχιστη προεπεξέργασία των στερεών αποβλήτων (mass-fired) και τις μονάδες (RDF-fired) που λειτουργούν με προδιαχωρισμένο οργανικό υλικό π.χ. επεξεργασμένο RDF ως καύσιμο.

Ως επί το πλείστο χρησιμοποιούνται μονάδες τύπου mass-fired. Η ειδοποιός διαφορά τους έναντι των μονάδων RDF-fired, εστιάζεται στο ότι τα απόβλητα εισάγονται στη μονάδα καύσης, χωρίς να υποστούν ιδιαίτερη προεπεξέργαση. Ως εκ τούτου δεν απαιτείται διαχωρισμός του οργανικού - καύσιμου υλικού και δε χρειάζεται να εγκατασταθεί σύστημα μηχανικής διαλογής. Εν προκείμενω θα πρέπει να απομακρύνονται τα ογκώδη και τα επικίνδυνα απόβλητα, τα οποία εγκυμονούν κινδύνους, αφού δύναται να προκαλέσουν βλάβες στη λειτουργία της μονάδας.

Εικόνα 4-7. Τυπική εγκατάσταση εργοστασίου αποτέφρωσης απορριμμάτων τύπου mass-fired, με ανάκτηση ενέργειας

Οι μονάδες τύπου RDF-fired πλεονεκτούν έναντι των μονάδων mass-fired, στα ακόλουθα σημεία:
Εικόνα 4-8. Τυπική εγκατάσταση μονάδας τύπου RDF-fired

4.5 Χρήση Ανεπεξεργαστής ύλης ως Εδαφοβελτιωτικό
Τα κτηνοτροφικά απόβλητα χαρακτηρίζονται από υψηλό οργανικό φορτίο, υψηλές συγκεντρώσεις θρεπτικών στοιχείων όπως άζωτο, φωσφόρο, κάλιο, υψηλή ηλεκτρική αγωγιμότητα και αυξημένη συγκέντρωση βορίου. Τα απόβλητα μπορούν να αξιοποιηθούν στη γεωργία είτε ως λιπαντικά για τις καλλιέργειες, είτε ως εδαφοβελτιωτικά.
Σύμφωνα με τον Κώδικα Ορθής Γεωργικής Πρακτικής (Κ.Δ.Π. 407/2002), η χρήση των κτηνοτροφικών αποβλήτων σαν εδαφοβελτιωτικό είναι μία περιβαλλοντικά φιλική πρακτική, αρκεί να ακολουθούνται κάποιοι κανόνες ορθής διαχείρισης. Συνοπτικά για την εφαρμογή στο έδαφος οι παρακάτω κανόνες πρέπει να ακολουθούνται:

- Ορθός προγραμματισμός και σχεδιασμός για τον τρόπο και το χρόνο της απόθεσης.
- Πρέπει να πληροφορείται σχετικά ορθός αρμόδιος λειτουργός του Τμήματος Γεωργίας.
- Διασπορά σε απόσταση μεγαλύτερη από 100 μέτρα από πηγές ή γεωτρήσεις υδατοπρομήθειας.
- Αξιολόγηση συνολικής ποσότητας αζώτου σύμφωνα με τις ανάγκες των φυτών. Στόχος είναι τα 20 κιλά άζωτο ανά δεκάρι καθώς, επίσης, στα πλαίσια των διαδικασιών εναρμόνισης με το περιβαλλοντικό κεκτημένο της Ευρωπαϊκής Ένωσης ψηφίστηκε, τον Ιούλιο του 2002, ο Νόμος για τον Έλεγχο της Ρύπανσης των Νερών και του Εδάφους (Αρ. 106(I)/2002). Σκοπός του Νόμου είναι η προστασία των επιφανειακών και υπόγειων νερών και του εδάφους από ανθρώπινες δραστηριότητες καθώς, επίσης και ο έλεγχος της απόρριψης των υγρών και στερεών αποβλήτων. Στον Νόμο προβλέπονται συγκεκριμένα μέτρα για την πρόληψη και τον περιορισμό της ρύπανσης και την υιοθέτηση ολοκληρωμένης προσέγγισης στην αδειοδότηση και τον έλεγχο κτηνοτροφικών εγκαταστάσεων που προκαλούν ρύπανση των νερών και του εδάφους. Τα μέτρα υλοποιούνται μέσα από το Σύστημα Αδειοδότησης και Επιθεώρησης. Έχουν χορηγηθεί Αδειες Απόρριψης Αποβλήτων σε χοιροτροφικές, πτηνοτροφικές και αγελαδοτροφικές μονάδες.
5 ΠΕΡΙΓΡΑΦΗ ΕΡΓΟΥ

5.1 Περιγραφή Επιλεγμένης Μεθόδου

Στο προηγούμενο κεφάλαιο περιγράφηκαν οι βέλτιστες διαθέσιμες τεχνικές για την επεξεργασία των κτηνοτροφικών αποβλήτων, οι οποίες εγγυούνται περιορισμό των αρνητικών περιβαλλοντικών επιπτώσεων της εκτεταμένης κτηνοτροφίας. Η μέθοδος της αναερόβιας χόνευσης είναι η μοναδική μέθοδος από τις διαθέσιμες, κατά την οποία το απόβλητο μετατρέπεται σε ένα χρήσιμο ενεργειακό προϊόν, το οποίο μπορεί να τύχει εκμετάλλευσης. Κατά την αναερόβια χόνευση παράγεται βιοαέριο, το οποίο περιέχει σε σημαντικές ποσότητες μεθάνιο (~60%), και ανήκει στην κατηγορία των αναεώσμων πηγών ενέργειας. Η ενέργεια καύσης του βιοαερίου χρησιμοποιείται για την παραγωγή ηλεκτρικής ενέργειας και θερμικώς ενέργειας. Αυτό σε συνδυασμό με την κυβερνητική πολιτική των ενισχύσεων των βιολογικών μονάδων και των αναεώσμων πηγών ενέργειας, είναι ο λόγος που η μέθοδος της αναερόβιας χόνευσης είναι οικονομικά βιώσιμη και έχει γνωρίσει εκτεταμένη εφαρμογή τις τελευταίες δεκαετίες.

To μελετώμενο έργο αποτελεί μια σύνθετη τεχνολογική λύση για τη βέλτιστη επεξεργασία κτηνοτροφικών αποβλήτων. Προκειμένου να επιτευχθεί ο μέγιστος βαθμός αποτελεσματικότητας και ταυτόχρονα η βέλτιστη εξοικονόμηση πόρων, μια σειρά τεχνολογιών έχουν ενσωματωθεί στο έργο, οι οποίες μπορούν να εγγυηθούν το καλύτερο αποτέλεσμα τόσο από περιβαλλοντικής ικανότητας όσο και από λειτουργική.

Η διαδικασία όπου θα εφαρμοστεί στον υπό μελέτη σταθμό ονομάζεται βιολογική διαδικασία και συνιστάται σε ταυτόχρονη εφαρμογή αερόβιας (δραστική λάσπη) και αναερόβιας (ψυχρόφιλη) επεξεργασίας των υγρών αποβλήτων. Ο συνδυασμός των δύο τεχνολογιών επιφέρει σημαντικά οφέλη από άποψη απλότητας κατασκευής, λειτουργικών εξόδων και απόδοσης. Κατά τη διάρκεια της αναερόβιας χόνευσης παράγεται βιοαέριο το οποίο αξιοποιείται προς ηλεκτροπαραγωγή, προσφέροντας αρκετή ενέργεια για την πλήρη λειτουργία όλου του σταθμού. Παράλληλα, η αερόβια επεξεργασία με τη μέθοδο της δραστικής λάσπης, είναι σχεδιασμένη με τρόπο που να αξιοποιείται στο μέγιστο ο χώρος των δεξαμενών και η κατανάλωση της ηλεκτρικής ενέργειας να είναι περιορισμένη. Το τελικό στάδιο επεξεργασίας περιλαμβάνει μία μονάδα αντίστροφης όσμωσης από οπού προκύπτει νερό πλήρως απαλλαγμένο από οιοσδήποτε προσμείζες. Το παραγόμενο νερό, μετά την αντίστροφη όσμωση, είναι ποιότητας που επιτρέπει τη χρήση του για άρδευση, εκπλύσεις ή ακόμα και για ύδρευση των ζώων, μετατρέποντας έτσι τα απόβλητα σε χρήσιμο προϊόν.

Το παραγόμενο βιοαέριο θα οδηγείται προς καύση σε γεννήτρια διπλού καυσίμου συμπαραγωγής ηλεκτρικής ενέργειας. Η ηλεκτρική ενέργεια θα χρησιμοποιείται για την κάλυψη των ιδίων αναγκών λειτουργίας του σταθμού και επίσης θα καλύπτει το μεγαλύτερο μέρος της κατανάλωσης
ηλεκτρισμού από το χοιροστάσιο. Η θερμική ενέργεια επίσης θα χρησιμοποιείται για την κάλυψη των θερμικών αναγκών του χοιροστασίου, αντικαθιστώντας την καύση πετρελαίου. Η συνολική ημερήσια παραγόμενη ηλεκτρική ενέργεια εκτιμάται στις 135 kWh, ενώ η παραγόμενη θερμική ενέργεια εκτιμάται στις 190 kWh ημερησίως.

5.2 Συνοπτική Τεχνική Περιγραφή Έργου

Το διάγραμμα ροής της μονάδας επισυνάπτεται στα Παραρτήματα μαζί με τα σχέδια διάταξης της εγκατάστασης (Παράρτημα Α). Αναλυτικά ο υπό μελέτη σταθμός βιολογικής επεξεργασίας των χοιροτροφικών λυμάτων θα περιλαμβάνει τα παρακάτω μέρη:

1. Δεξαμενή εξισορρόπησης και ομοιογενοποίησης ανεπεξέργαστων λυμάτων.
2. Σύστημα επίπλευσης διαλυμένου αέρα (DAF) για την πάχυνση των λυμάτων.
3. Αναερόβιος βιολογικός αντιδραστήρας, τύπου ψυχρόφιλης εμβολικής ροής, εγκαταστημένος σε τάφρο εσκαφής, με ελεύθερο χώρο αποθήκευσης βιοαερίου.
4. Καταλυστική μηχανικού διαχωρισμού του ρεύματος εξόδου του αναεροβικού αντιδραστήρα σε υγρά και στερεά
5. Κοπροσπέρασμα στερεών μηχανικού διαχωρισμού
6. Γεννήτρια (dual fuel) συμπαραγωγής ηλεκτρικής και θερμικής ενέργειας από το παραγόμενο βιοαέριο.
7. Δεξαμενή απονιτροποίησης και επαφής/σταθεροποίησης των λυμάτων πριν την αερόφια επεξεργασία.
8. Αερόβια βιολογική επεξεργασία δραστικής λάσπης, εξοπλισμένη με επιφανειακούς αεριστήρες.
9. Δεξαμενή καθίζησης λάσπης τύπου Lamella, με ανακυκλωφορία λάσπης.
10. Δεξαμενή αεροβιακής επεξεργασίας λύματος με συστοιχία βυθισμένων μεμβρανών (Membrane Bio-Reactor, MBR).
11. Δεξαμενή χλωρίωσης επεξεργασμένου νερού.
12. Στάθμη αντίστροφης όσμωσης για την πλήρη απομάκρυνση όλων των προσμίξεων
13. Δεξαμενή προσωρινής αποθήκευσης καθαρού νερού προς άρδευση.
14. Μηχανολογική εγκατάσταση και συστήματα διαχείρισης υλικών (αναμικτήρες, αντιλίες, βαλβίδες, σωληνώσεις κλπ.).
15. Ηλεκτρική εγκατάσταση και συστήματα ηλεκτρονικού ελέγχου.
Εικόνα 5-1. Διάγραμμα ροής σταθμού
Αναγκαία υποστατικά και άλλοι χώροι επεξεργασίας ως ακολούθως:

1. Δωμάτιο στέγασης ηλεκτρονικών πλασιών ελέγχου.
2. Δωμάτιο στέγασης (εμπορευματοκιβώτιο) της γεννήτριας συμπαραγωγής ηλεκτρικής & θερμικής ενέργειας.

5.3 Χαρακτηριστικά Λυμάτων προς Επεξεργασία και Κανονισμοί

Η διασταυρολόγηση και σχεδιασμός της μονάδας αναερόβιας και αερόβιας επεξεργασίας προκύπτει από την ανάλυση και αξιολόγηση των εξής δεδομένων:

1. Ποσότητα αποβλήτων
2. Προέλευση αποβλήτων
3. Ποιότητα αποβλήτων
4. Νομοθεσία για την ποιότητα νερού σε σταθμούς επεξεργασίας λυμάτων.
5. Νομοθεσία και βέλτιστες τεχνικές σχετικά με επεξεργασία και διάθεση αποβλήτων.

Τα δεδομένα σχετικά με τα ποσοτικά και ποιοτικά χαρακτηριστικά των λυμάτων του χοιροστασίου της εταιρείας ΝΙΚΟΣ ΠΙΜΠΟΣ ΛΤΔ δίνονται στους πιο κάτω πίνακες.

Τάμανας 5-1. Δυναμικότητα χοιροστασίου

<table>
<thead>
<tr>
<th>Εταιρεία</th>
<th>Δυναμικότητα</th>
<th>Απόβλητα (τόνου/ημέρα)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΝΙΚΟΣ ΠΙΜΠΟΣ ΛΤΔ</td>
<td>900 Χοιρομητέρες</td>
<td>60</td>
</tr>
<tr>
<td>Ετήσια</td>
<td></td>
<td>21.900</td>
</tr>
</tbody>
</table>

Σε ότι αφορά την ποιότητα των αποβλήτων λαμβάνονται οι παράμετροι ως ακολούθως:
Πίνακας 5-2. Τυπικά Ποιοτικά Χαρακτηριστικά των Χοιρολυμάτων της Κύπρου

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Μονάδα</th>
<th>Τιμές</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>mg/L</td>
<td>40.000 – 60.000</td>
</tr>
<tr>
<td>BOD₅</td>
<td>mg/L</td>
<td>20.000 – 30.000</td>
</tr>
<tr>
<td>Total Solids (%DM)</td>
<td>%</td>
<td>5 – 6</td>
</tr>
<tr>
<td>Ηλεκτρική Αγωγιμότητα</td>
<td>mS/cm</td>
<td>10 – 15</td>
</tr>
<tr>
<td>Ολικό Άξωτο</td>
<td>%</td>
<td>0.35 – 0.7</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>6.5 – 7.5</td>
</tr>
</tbody>
</table>

Τα προς επεξεργασία λύματα του χοιροστασίου είναι σε υγρή και ημ-υγρή μορφή και περιέχουν, εκτός από περιπτώματα ζώων (55% ούρα, 45% κόπρανα), τρίχες, υπολείμματα ζωοτροφών, τα νερά καθαρισμού και των διαφορών του συστήματος ύδρευσης των ζώων, υλικό σταυλιστής (άχυρο, πριονίδι, κλπ.). Τα χαρακτηριστικά των αποβλήτων εξαρτώνται από ένα μεγάλο αριθμό παραγόντων συμπεριλαμβανομένων και των ακόλουθων: είδος ζώου, ικανότητα χώνευσης, ποιότητα τροφής, παραγωγική ικανότητα, ποιότητα νερού, συνθήκες σταυλισμού, κλιματολογικές συνθήκες, κλπ.

Στα προς επεξεργασία απόβλητα δεν περιλαμβάνονται νεκρά ζώα, απόβλητα σφαγείων, αστικά απόβλητα εργαζομένων, μηχανέλαια ή στερεά απόβλητα. Σύμφωνα με τον Κανονισμό 1774/2002 του Ευρωπαϊκού Κοινοβουλίου, τα χοιρολύματα ανήκουν στην Κατηγορία 2 των ζωικών αποβλήτων (κόπρος και περιεχόμενο πεπτικό συστήματος), για τα οποία δεν απαιτείται παστερίωση πριν την μεταποίηση σε σταθμό βιοαερίου.

Οι πιο συνηθισμένες Βέλτιστες Διαθέσιμες Τεχνικές για την επεξεργασία αποβλήτων, όπως προβλέπονται και από το σχετικό έγγραφο της Ευρωπαϊκής Επιτροπής (Best Available Techniques for the Waste treatment Industries, May 2006) έχουν περιγραφεί στο προηγούμενο κεφάλαιο.

5.4 Χρονοδιάγραμμα Κατασκευής του Έργου

Το χρονοδιάγραμμα εργασιών κατασκευής αναμένεται εκτιμάται στους 7 μήνες. Κατά τη παραδοχή το 8ωρος λειτουργία του εργοστασίου. Οι εργασίες μπορούν να διαχωριστούν σε τρία κύρια μέρη:

1. Διαμόρφωση τεμαχίου, εκσκαφή δεξαμενών και οικοδομικές εργασίες.
2. Εγκατάσταση μηχανολογικού εξοπλισμού.
3. Ηλεκτρολογική σύνδεση και υδραυλικές εργασίες.
Στον πίνακα που ακολουθεί αναλύονται οι κατασκευαστικές εργασίες του εργοταξίου και η επιμέρους χρονική διάρκεια αυτών.

Εκτιμάται ότι κατά μέσο όρο θα βρίσκεται στο χώρο του εργοταξίου συνεργείο 4 ατόμων συν ο επιβλέπον μηχανικός του έργου. Το μεγαλύτερο μέρος των εργασιών αφορά στην κατασκευή της υποδομής της βιολογικής επεξεργασίας των υγρών λυμάτων και την ηλεκτρομηχανολογική εγκατάσταση.

Πίνακας 5-3. Χρονοδιάγραμμα εργασιών

<table>
<thead>
<tr>
<th>Εργασία</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διαμόρφωση χώρου και εκσκαφή</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δημιουργία δεξαμενών και υποστατικών</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Εγκατάσταση εξοπλισμού</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ηλεκτρολογικές & Υδραυλικές Εργασίες</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.5 Διαστασιολόγηση Εξοπλισμού και Δεξαμενών

5.5.1 Δεξαμενή Εξισορρόπησης

Τα χοιρολύματα θα μεταφέρονται στον σταθμό με τη βοήθεια της βαρούτητας μέσω ανοιχτών τσιμεντένιων αγωγών, από το χοιροστάσιο της εταιρίας ΝΙΚΟΣ ΠΙΜΠΟΣ ΛΤΔ, όπου θα διοχετεύονται στην δεξαμενή υποδοχής και εξισορρόπησης των χοιρολύματων. Στην δεξαμενή θα υπάρχει σύστημα συνεχούς ανάδειξης έτσι ώστε να διατηρούνται τα αδιάλυτα στερεά σε αιώρηση.

Δεξαμενή εξισορρόπησης υπάρχει ήδη στο χοιροστάσιο και χρησιμοποιείται στο υπάρχον σύστημα μηχανικού διαχωρισμού. Η δεξαμενή θα χρησιμοποιηθεί για τις ανάγκες της αναεροβίας επεξεργασίας, όταν ολοκληρωθεί το έργο. Η χωρητικότητα της δεξαμενής είναι ικανοποιητική για να εξυπηρετήσει τις ανάγκες του σταθμού, με χρόνο κατακράτησης περίπου 2 ημερών. Πριν την είσοδο στη δεξαμενή τα λύματα περνούν από σχάρα για την κατακράτηση ξένων σωματιδίων μεγαλύτερων από 2mm. Η τροφοδότηση της βιολογικής επεξεργασίας θα γίνεται με αντλία τροφοδοσίας. Από τη δεξαμενή εξισορρόπησης τα λύματα θα οδηγούνται στην εγκατάσταση επίπλευσης με διαλυμένο αέρα (DAF) όπου διαχωρίζονται τα αιωρούμενα στερεά από το νερό. Τα παραμένα λύματα θα οδηγούνται στο αναερόβιο αντιδραστήρα ενώ το απόνερο θα πηγαίνει στη μονάδα δραστικής λάσπης.

Τα χαρακτηριστικά της δεξαμενής εξισορρόπησης δίνονται στον πιο κάτω πίνακα.
Πίνακας 5-4. Διαστασιολόγηση δεξαμενής εξισορρόπησης

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Περιγραφή</th>
<th>Ποσότ.</th>
<th>Χαρακτηριστικά</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Δεξαμενή εξισορρόπησης / ομογενοποίησης</td>
<td>1</td>
<td>• Κατασκευή από σκυρόδεμα, χωρητικότητα 150 m³
• Διαστάσεις Μήκος×Πλάτος×Υψός: 7.5m×5m×4m
• Σύστημα ανάδευσης
• Σύστημα τροφοδότησης αντιδραστήρα</td>
</tr>
</tbody>
</table>

5.5.2 Δεξαμενή DAF

Από τη δεξαμενή εξισορρόπησης τα λύματα θα οδηγούνται στην εγκατάσταση επίπλευσης με διαλυμένο αέρα (DAF) όπου διαχωρίζονται τα αιωρούμενα στερέα από το νερό. Τα παρχμένα λύματα θα οδηγούνται στο αναερόβιο αντιδραστήρα ενώ το απόνερο θα πηγαίνει στη μονάδα δραστικής λάσπης. Με αυτή τη διάταξη επιτυγχάνονται δύο κέρδη: 1) Μειώνεται ο όγκος των λυμάτων που εισέρχονται στον αναερόβιο αντιδραστήρα και επομένως μειώνεται και ο όγκος του, 2) Το απόνερο που προκύπτει και οδηγείται στον αερόβιο αντιδραστήρα περιέχει ικανοποιητική αναλογία τροφής για την λειτουργία της μονάδας νιτροποίησης/απονιτροποίησης.

Επίσης στο σύστημα επίπλευσης θα επιστρέφει η περίσσεια λάσπης της αερόβιας επεξεργασίας προκειμένου να διαχωριστούν οι μικροοργανισμοί και να ανακυκλωθούν στον αναερόβιο αντιδραστήρα για πλήρη βιοαποδόμηση. Επιπλέον στο σύστημα επίπλευσης θα εισέρχεται το υγρό ρέμα των λυμάτων από τον αναερόβιο αντιδραστήρα, μετά το μηχανικό διαχωρισμό στην κοχλιόπρεσσα.

Η επίπλευση χρησιμοποιείται για την επεξεργασία αποβλήτων με σημαντικό φορτίο από λεπτά αιωρούμενα υλικά και λίπη, όπως είναι τα απόβλητα από γαλακτοκομεία, σφαγεία, έλαια λιποπαγίδων κλπ. Επομένως είναι μια τεχνική που προσφέρεται για εφαρμογή στη συγκεκριμένη μονάδα με πολύ καλά αποτελέσματα. Η επίπλευση συνίσταται στην εισαγωγή λεπτών φυσιαλίδων αέρα στα απόβλητα, που προσκολλώνται στα αιωρούμενα σωματίδια και δημιουργούν αρκετή άνωση ώστε να τα ανεβάσουν στην επιφάνεια. Έτσι διαχωρίζονται σωματίδια με ειδικό βάρος μεγαλύτερο του νερού αλλά επίσης επιτρέπεται η άνοδος των λιπών και των ελαίων.

Στο σύστημα επίπλευσης με διαλυμένο αέρα, διαλύεται ο ατμοσφαιρικός αέρας στα λύματα σε πίεση αρκετών bar και στη συνέχεια η πίεση διακόπτεται απότομα, όποτε δημιουργείται εκτόνωση του υπερκρεαμένου αέρα και ελευθέρωση μικροσκοπικών φυσιαλίδων. Η διαδικασία υποβοηθείται συνήθως με χρήση κροκουδωτικών μέσων που επιτρέπουν τη συσσωμάτωση των αιωρούμενων.

Μελέτη Εκτίμησης Επιπτώσεων Στο Περιβάλλον Από Την Κατασκευή Και Λειτουργία Σταθμού Επεξεργασίας Των Λυμάτων Του Χοιροστασίου Της Εταιρείας Νίκος Πίμπος Λτδ
Εικόνα 5-2. Σύστημα επίπλευσης με διαλυμένο άερα

Η διαστασιολόγηση, λειτουργία και απόδοση του συστήματος δίνεται στον παρακάτω πίνακα βάση παρόμοιων εμπορικών συστημάτων. Το σύστημα σχεδιάζεται για 10ωρη καθημερινή λειτουργία και 100m3/d συνολική παροχή λυμάτων.

Πίνακας 5-5. Χαρακτηριστικά λειτουργίας και απόδοση DAF

<table>
<thead>
<tr>
<th>Χαρακτηριστικά Λειτουργίας</th>
<th>Επιφάνεια</th>
<th>Ροή Λυμάτων</th>
<th>Ανακυκλοφορία</th>
<th>Πίεση Ανακυκλ.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10m2</td>
<td>100m3/d</td>
<td>50m3/d</td>
<td>6,5 bara</td>
</tr>
<tr>
<td>Παροχή Αέρα</td>
<td>Ολικά Στερεά</td>
<td>Αιωρούμενα Στερεά</td>
<td>COD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15m3/hr</td>
<td>44.600 mg/l</td>
<td>35.600mg/l</td>
<td>43.000mg/l</td>
</tr>
<tr>
<td>BOD₅</td>
<td>Υδραυλική Φόρτιση</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.700 mg/l</td>
<td>~1 m3/m2.h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Χαρακτηριστικά Λύματος Εξόδου</th>
<th>Αιωρούμενα Στερεά</th>
<th>Απόδοση σε Στερεά</th>
<th>COD</th>
<th>Απόδοση COD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.000 mg/l</td>
<td>80%</td>
<td>21.500 mg/l</td>
<td>64%</td>
</tr>
</tbody>
</table>
Τα βασικά μέρη του συστήματος επίπλευσης δίνονται στον πίνακα:

Πίνακας 5-6. Χαρακτηριστικά συστήματος πάχυνσης λυμάτων με επίπλευση

<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Χαρακτηριστικά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεξαμενή πάχυνσης λυμάτων (DAF)</td>
<td>• Μεταλλική κατασκευή, χωρητικότητα 20 m³</td>
</tr>
<tr>
<td></td>
<td>• Διαστάσεις M×Π×Υ: 4,5×2,5×2μ</td>
</tr>
<tr>
<td></td>
<td>• Αντλία πίεσης 7bar, παροχής 10m³/hr, Ισχύς 1,5kW</td>
</tr>
<tr>
<td></td>
<td>• Εξαφριστήρας</td>
</tr>
<tr>
<td></td>
<td>• Σύστημα τροφοδότησης αντιδραστήρα</td>
</tr>
<tr>
<td></td>
<td>• Δοχείο πίεσεως αέρα</td>
</tr>
<tr>
<td></td>
<td>• Συμπιεστής Αέρα Παροχής 15m³/hr, Πίεσης 7bar, Ισχύς 2,5kW</td>
</tr>
</tbody>
</table>

5.5.3 Αναερόβιος Αντιδραστήρας

Στον αναερόβιο αντιδραστήρα (δευτεροβάθμια επεξεργασία), τα λύματα θα υπόκεινται σε βιολογική επεξεργασία αναερόβιας χώνευσης για περίοδο άνω των 100 ημερών, κάτω από ψυχρόφιλες συνθήκες. Η θερμοκρασία του αντιδραστήρα θα εξαρτάται από τις συνθήκες περιβάλλοντος και τη δραστηριότητα των μικροοργανισμών. Αποτέλεσμα της αναερόβιας χώνευσης είναι η βιολογική διάσπαση των οργανικών πτητικών ουσιών/ενώσεων και παραγωγή ενός μίγματος αερίων με κύρια συστατικά το μεθάνιο 60 – 65%, το διοξείδιο του άνθρακα 30 – 35% και άλλα άλλα αερία όπως είναι το υδροθέιο και η αμμωνία. Εκτιμάται ότι το 80-90% των πτητικών στερεών θα μετατρέπεται σε βιοαέριο. Τα χοιρολύματα, σε αντίθεση με άλλα κτηνοτροφικά απόβλητα, παρουσιάζουν υψηλό βαθμό μετατροπής των οργανικών ουσιών, παράγοντας σημαντικά μεγαλύτερη ποσότητα βιοαερίου ανά μάζα στερεών.

Πίνακας 5-7. Δυναμικότητα σταθμού.

<table>
<thead>
<tr>
<th>Απόβλητο</th>
<th>Ποσότητα (τ/έτος)</th>
<th>COD (g/L)</th>
<th>Σύνολο COD (τ/έτος)</th>
<th>Ποσοστό μετατροπής (m³/ton COD)</th>
<th>Βιοαέριο (m³/έτος)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Χοιρολύματα</td>
<td>21.900</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σύνολο COD (τ/έτος)</td>
<td>985</td>
<td>0,55 – 0,6</td>
<td>456.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Η ποσότητα και ποιότητα του βιοαερίου εξαρτάται κυρίως από το ποσοστό πτητικών στερεών στα λύματα (στερεά που δύνανται να μετατραπούν σε βιοαέριο), το οποίο εκτιμάται βάση του COD. Στον παρακάτω
πίνακα υπολογίζεται το ολικό COD των χοιρολυμάτων που εισέρχονται προς επεξεργασία και η μετατροπή τους σε βιοαέριο.

Με βάση τα αποτελέσματα υφιστάμενων σταθμών βιοαερίου που λειτουργούν σε διάφορα μέρη της Ευρωπαϊκής Ένωσης και του υπόλοιπου κόσμου, εκτιμάται ότι θα παράγονται περίπου 550 - 600 m³ βιοαερίου ανά τόνο COD και έτσι η συνολική ετήσια ποσότητα βιοαερίου υπολογίζεται στα 456.000 m³ περίπου.

Εικόνα 5-3. Τυπική διάταξη αντιδραστήρα εμβολικής ροής.

Ο αντιδραστήρας θα είναι εμβολικής ροής με ελαφριά κλίση για συσσώρευση και απομάκρυνση των στερεών που καθιζάνουν. Η υπέργεια κατασκευή της είναι χαμηλού ύψους, ο αντιδραστήρας θα διαμορφωθεί σε επακομισμένη τάφρο και θα είναι ημι-υπόγειος. Τα τοιχώματα της τάφρου θα καλυφθούν από υδατοστεγή με μπράνι πολυμερούς, ώστε να αποφεύγεται η απορροή στο υπέδαφος. Περιμετρικά της τάφρου θα τοποθετηθεί τσιμέντενια περίφραξη επάνω στην οποία θα ασφαλισθεί η μεμβράνη υδατοστεγάνωσης και η εξωτερική μεμβράνη του θόλου.

Ο αντιδραστήρας θα στεγαστεί με υπέργειο θόλο που θα λειτουργεί και ως χώρος αποθήκευσης του παραγόμενου βιοαερίου. Η χωρητικότητα σε λύματα θα είναι ~ 3.500 kβ.μ. Η χωρητικότητα του θόλου που συγκρατεί το βιοαέριο καθορίζεται από το ύψος του καλλιματος και είναι τουλάχιστον 920 kβ.μ., ικανός για 17 ώρες αποθήκευσης. Η διαστασιολόγηση φαίνεται στον πίνακα.
Πίνακας 5-8. Διασταυρολόγηση αντιδραστήρα

<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Χαρακτηριστικά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αναερόβιος Αντιδραστήρας</td>
<td>• Χομάτινη υδατοστεγής κατασκευή. Χωρητικότητα 3.500 m³ λυμάτων.</td>
</tr>
<tr>
<td></td>
<td>• Θόλος από ελαστική μεμβράνη, χωρητικότητας 920 m³</td>
</tr>
<tr>
<td></td>
<td>• Μήκος x Πλάτος x Ύψος = 43,8 x 21 x 5 μ.</td>
</tr>
<tr>
<td></td>
<td>• Ανοξείδωτοι αισθητήρες, σωλήνες και εξαρτήματα από PVC</td>
</tr>
</tbody>
</table>

5.5.4 Κοχλιόπρεσα Υγρών / Στερεών

Μετά την πολιήμερη παραμονή των λυμάτων στον αντιδραστήρα και την αναερόβια βιολογική επεξεργασία τους, τα χωνεμένα πλέον υγρά λύματα εξέρχονται από τον αντιδραστήρα και αρχίζει το τρίτο στάδιο της επεξεργασίας, όπου θα γίνεται διαχωρισμός στερεών/υγρών με την χρήση κοχλιόπρεσας και ακολουθεί η τελική βιολογική επεξεργασία των προϊόντων. Η κοχλιόπρεσα επιτυγχάνει απόδοση διαχωρισμού της τάξης του 50% για διαμέτρημα κόσκινου 0,25mm, με ποσοστό υγρασίας στα παραγόμενα στερεά της τάξης του 75%.

Στον πίνακα που ακολουθεί παρουσιάζονται οι υπολογισμοί του διαχωρισμού του επεξεργασμένου λύματος, σε στερεά και υγρά ρεύματα.

Πίνακας 5-9. Χαρακτηριστικά μηχανικού διαχωρισμού.

<table>
<thead>
<tr>
<th>Διαχωριστής</th>
<th>Ροή Εισόδου</th>
<th>Απόδοση</th>
<th>Υγρό Ρεύμα</th>
<th>Στερεό Ρεύμα</th>
<th>Στερεό Ρεύμα</th>
<th>Ποσοστό Στερεών</th>
</tr>
</thead>
<tbody>
<tr>
<td>Στερεό Προϊόν</td>
<td>28 t/d</td>
<td>50%</td>
<td>26,6 t/d</td>
<td>1,4%</td>
<td>1,1 t/d</td>
<td>20%</td>
</tr>
</tbody>
</table>

Διαχωριστής 28 t/d 50% 26,6 t/d 1,4% 1,1 t/d 20%

Περίπου 510 τόνοι στερεά απόβλητα (20% στερεά) θα παράγονται ετησίως, τα οποία θα είναι πλούσια σε οργανικό άνθρακα και θρεπτικές ουσίες και ως εκ τούτου θα αποτελούν καλής ποιότητας οικονομικά εκμεταλλεύσιμο εδαφοβελτιωτικό. Τα στερεά απόβλητα που θα είναι εξευγενεσμένα και απαλλαγμένα από παθογόνους μικροοργανισμούς, θα υπόκεινται σε περαιτέρω επεξεργασία λιπασματοποίησης με αποτέλεσμα την περαιτέρω καλλιέργεια της έκτασης τους ως εδαφοβελτιωτικό, αλλά και την ελαχιστοποίηση του ογκούς
τους μέσοι της ξήρανσης. Εκτιμάται ότι η τελική ποσότητα οργανικού λιπάσματος που θα παράγεται στον σταθμό, θα είναι περίπου 290 τόνοι/έτος, με ποσοστό υγρασίας 65%.

Η ξήρανση / ορίζοντα θα γίνεται σε ειδικά διαμορφωμένο χώρο, σε ανοιχτή αερόβια εγκατάσταση. Η λάσπη θα στοιβάζεται σε σωρούς όπου θα παραμένει για χρονικό διάστημα 4-6 εβδομάδες μέχρι πλήρης αδρανοποίηση. Οι σωροί πρέπει να ανακατεύονται τακτικά, ώστε να μην δημιουργούνται αναερόβιες συνθήκες. Η κομποστοποίηση γίνεται πάνω σε στιςμένα θέση απολύμανσης που διαθέτει αυλάκι συλλογής των υγρών εκπλημάτων από τους σωρούς, τα οποία θα επιστρέφουν για επεξεργασία μαζί με τα χοιρολύματα.

Θα πρέπει να τονίσουμε ότι κατά την αναεροβία επεξεργασία μέρος του ολικού άξοντο καταναλώνεται από τους μικροοργανισμούς, επίσης μέρος αυτού καταβρέχεται μαζί με τα βαριά σωματίδια στον πυθμένα του αντιδραστήρα. Στη συνέχεια η έξοδος του αντιδραστήρα οδεύει προς τον μηχανικό διαχωρισμό όπου ξανά μέρος του αξώτου κατακατείχεται στο φίλτρο και απομακρύνεται μαζί με τα στερεά του διαχωρισμού. Εκτιμάται ότι περίπου το 50% του ολικού αξώτου των αρχικών χοιρολύματων απομακρύνεται κατά τα δύο αυτά στάδια.

Η ιδία διαδικασία ισχύει και για άλλες ανόργανες ενώσεις που περιέχονται στα χοιρολύματα και κυρίως τα φωσφορικά και άλλα άλατα, τα οποία σε κάποιο βαθμό απομακρύνονται μαζί με τα αιωρούμενα στερεά, με αποτέλεσμα η ηλεκτρική αγωγιμότητα του υγρού προϊόντος να είναι μειωμένη σε σχέση με τα αρχικά χοιρολύματα.

2. Υγρό Προϊόν
Περίπου 9.700 τόνοι νερό θα παράγονται ετησίως, το οποίο αναμένεται να περιέχει λιγότερο από 1,1% αιωρούμενα στερεά, θα είναι σταθεροποιημένο και κατά συνέπεια απαλλαγμένο από τους οποιουσοδήποτε παθογόνους μικροοργανισμούς. Μετά τον μηχανικό διαχωρισμό, το υγρό ρεύμα θα υπάκουει σε πρόσθετη βιολογική επεξεργασία με τη μέθοδο δραστικής λάσπης, για την απομάκρυνση του αξώτου και την περαιτέρω μείωση του οργανικού φορτίου. Πριν την είσοδο στις δεξαμενές νιτροποίησης / απονιτροποίησης, το λύμα εισέρχεται στο σύστημα επίπλευσης (DAF) ώστε να απομακρύνουν περαιτέρω τα αιωρούμενα στερεά. Η ποιότητα του υγρού προϊόντος του μηχανικού διαχωρισμού δίνεται στον παρακάτω πίνακα.

Πίνακας 5-10. Χαρακτηριστικά νερού μηχανικού διαχωρισμού

<table>
<thead>
<tr>
<th>Χαρακτηριστικά Νερού Μηχανικού Διαχωρισμού</th>
</tr>
</thead>
<tbody>
<tr>
<td>Παράμετρος</td>
</tr>
<tr>
<td>COD</td>
</tr>
<tr>
<td>BOD5</td>
</tr>
<tr>
<td>Αιωρούμενα Στερεά</td>
</tr>
</tbody>
</table>
5.5.5 Γεννήτρια Συμπαραγωγής Ηλεκτρικής και Θερμικής Ενέργειας

Όπως αναφέρεται πιο πάνω, το κύριο εκμεταλλεύσιμο υποπροϊόν της αναεροβικής χώνευσης θα είναι το βιοαέριο, του οποίου το κύριο συστατικό θα είναι το μεθάνιο. Το βιοαέριο, αφού πρώτα θα ρυθμίζεται σε τοποθετημένη ενέργεια dual fuel με σύστημα ανάκτησης θερμικής ενέργειας. Η παραγόμενη ενέργεια θα χρησιμοποιείται για τη λειτουργία της μονάδας επεξεργασίας λυμάτων, καλύπτοντας τις ενεργειακές απαιτήσεις και μεγάλο ποσοστό των αναγκών του χοιροστασίου.

Ηλεκτρογεννήτρια διπλού καυσίμου (dual fuel) θα χρησιμοποιηθεί για την καύση του βιοαερίου και την παραγωγή ηλεκτρικής ενέργειας. Αυτού του τύπου οι γεννήτριες λειτουργούν με αέριο καύσιμο, χρησιμοποιώντας μικρή ποσότητα καύσιμου diesel για πιλοτική έναυση και συντήρηση της καύσης. Η κατανάλωση diesel είναι ~15% επί της παραγόμενης ενέργειας. Η απόδοση της γεννήτριας είναι γύρω στο 35% ενώ η απόδοση ανάκτησης θερμικής ενέργειας είναι 50%. Η γεννήτρια θα πρέπει να σταματάει την λειτουργία και να συντηρείται τακτικά. Εκτιμάται χρόνος λειτουργίας 330 ημερών συνολικά τον χρόνο.

Η ετήσια ποσότητα ηλεκτρικής ενέργειας και η θερμική ενέργεια δίνεται στον πίνακα που ακολουθεί.

Πίνακας 5-11. Υπολογισμός ηλεκτρικής και θερμικής ενέργειας.

<table>
<thead>
<tr>
<th>Ενεργειακή αξία μεθανίου</th>
<th>10,25 kWh_e / m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ηλεκτρική απόδοση γεννήτριας</td>
<td>35%</td>
</tr>
<tr>
<td>Παραγωγή ηλεκτρικής ενέργειας</td>
<td>31,2m3/hr × 10,25 × 35% = 115 kW_e</td>
</tr>
<tr>
<td>Ενεργειακή αξία diesel</td>
<td>10kWh_e / lt</td>
</tr>
<tr>
<td>Ημερήσια κατανάλωση diesel</td>
<td>15% x 115 kWh_e ≈ 20 kW_e ή 7lt/hr</td>
</tr>
<tr>
<td>Εγκατεστημένη ισχύς ηλεκτρογεννήτριας</td>
<td>115+20 = 135 kWh_e</td>
</tr>
<tr>
<td>Θερμική απόδοση γεννήτριας</td>
<td>50%</td>
</tr>
<tr>
<td>Θερμική Ενέργεια</td>
<td>190 kW_th</td>
</tr>
</tbody>
</table>
5.5.6 Δεξαμενή Σταθεροποίησης - Απονιτροποίησης

Στη δεξαμενή σταθεροποίησης – απονιτροποίησης εισέρχονται τρία ρεύματα: 1) Τα λύματα διαχωρισμού από το DAF (74,1m3/d), 2) Η ανακυκλωφορία της δραστικής λάσπης (40m3/d), 3) Ανακυκλωφορία λυμάτων από τη δεξαμενή αερισμού (180 m3/d)

Η δεξαμενή αυτή είναι σημαντική για τη σωστή λειτουργία του αερόβιου αντιδραστήρα που αποτελεί το επόμενο στάδιο επεξεργασίας. Στη δεξαμενή σταθεροποίησης τα φρέσκα λύματα έρχονται σε επαφή με τους μικροοργανισμούς της δραστικής λάσπης που ανακυκλωφορούν, με αποτέλεσμα την κατακράτηση των αιωρούμενων στερεών σωματιδίων από τις κροκύδες των μικροοργανισμών. Με το βήμα αυτό εξασφαλίζεται η αρχική σταθεροποίηση σημαντικού μέρους του οργανικού φορτίου πριν την είσοδο στον αερόβιο αντιδραστήρα.

Η δεξαμενή επιτελεί μια εξίσου σημαντική λειτουργία, την απονιτροποίηση των λυμάτων. Στη δεξαμενή αερισμού το άζωτο των λυμάτων υφίσταται νιτροποίηση με τη βοήθεια του οξυγόνου, ενώ με την ανακυκλωφορία στη δεξαμενή σταθεροποίησης που υπάρχει χαμηλή οξυγόνου και αρκετά υψηλό οργανικό φορτίο (τροφή), το νιτροποιημένο άζωτο ελευθερώνεται στην ατμόσφαιρα σαν ατμοσφαιρικό άζωτο.

Η δεξαμενή απονιτροποίησης διαστασιολογείται βάση της συγκέντρωσης αζώτου (σε μορφή νιτρικών ιών) που μπορούν να επεξεργαστούν από τους μικροοργανισμούς.

- Ποσότητα Αζώτου = 3,5gr/l ή 260kg/d
- Ικανότητα απονιτροποίησης = 250gr NO3-N/d/m³ δεξαμενής ⇒ Ελάχιστος Ογκός = 1000 m³ δεξαμενής

Η αιώρηση των λυμάτων και των μικροοργανισμών εξασφαλίζεται με χρήση βαθιά κατακεμμένων μηχανικών αναμικτήρων χαμηλών συνολικών, ώστε να κρατούν σε αιώρηση χωρίς να καταστρέφουν τις κροκύδες των μικροοργανισμών. Η ισχύς των αναμικτήρων για ικανοποιητική ανάδευση δίνεται από τη σχέση:

- Μηχανική ανάδευση = 5-20 w/ m3 δεξαμενής ⇒ Ισχύς 10kW

Τα βασικά μέρη της δεξαμενής αερισμού συνοψίζονται στον πίνακα:

| Πίνακας 5-12. Χαρακτηριστικά δεξαμενής σταθεροποίησης – απονιτροποίησης |
|---------------------------------|---------------------------------|
| Περιγραφή | Χαρακτηριστικά |
| Δεξαμενή σταθεροποίησης | • Κατασκευή από σκυρόδεμα, χωρητικότητα 1200 m3 |
| | • Διαστάσεις M×Π×Υ: 22×11×5 |
| | • Μηχανικοί Αναδευτήρες, ισχύς 10kW |
5.5.7 Δεξαμενή Αερισμού

Τα υγρά απόβλητα, μετά τη δεξαμενή σταθεροποίησης - απονιτροποίησης, οδηγούνται στη δεξαμενή αερισμού όπου εφαρμόζεται το δεύτερο στάδιο της δευτεροβάθμιας βιολογικής τους επεξεργασίας με τη μέθοδο της δραστικής λάσπης σε αερόβιες συνθήκες. Η δεξαμενή αερισμού σχεδιάζεται για αποτελεσματική απομάκρυνση του οργανικού φορτίου και νιτροποίησης της περιεχόμενης αμμωνίας.

Ο ρυθμός της νιτροποίησης στα απόβλητα εξαρτάται από τη θερμοκρασία και το pH, καθώς και από το διαλυμένο οξυγόνο. Επομένως υπάρχει μία εποχιακή εξάρτηση του ρυθμού απονιτροποίησης η οποία όμως μπορεί να αντισταθεί με την αύξηση των αιωρούμενων στερεών (MLSS) ή με κατάλληλη ρύθμιση του pH στη βέλτιστη περιοχή. Η ηλικία της λάσπης και η θερμοκρασία παίζουν ουσιαστικό ρόλο στην ανάπτυξη και συντήρηση του πληθυσμού των νιτροβακτηρίων. Στα συστήματα αερισμού είναι απαραίτητη η μεγάλη ηλικία της λάσπης (μακρύς χρόνος συγκρατήσεως), για να μην χαθούν πρόωρα τα βιώσιμα αυτότροφα νιτροβακτήρια με την απορριπτόμενη περίσσεια λάσπης. Η ανάπτυξη των νιτροβακτηρίων ευνοείται σε χαμηλή συγκέντρωση οργανικού φορτίου, όπου δεν υπάρχει ανταγωνισμός από τους ετερότροφους μικροοργανισμούς της αποσυνθέσεως. Ο βέλτιστος λόγος BOD/NH3-N ≈ 40/25.

Η ανάπτυξη και οξυγόνωση του λύματος πραγματοποιείται με επιφανειακούς μηχανικούς αεριστήρες, ενώ το βάθος της δεξαμενής είναι κατάλληλο ώστε να μην διακινείται η μεταφορά του οξυγόνου. Η διασταυρολόγηση γίνεται βάση του παρακάτω πίνακα, και συγκεκριμένα βάση του αμμωνιακού φορτίου που θα βιοαποδομείται ανά μονάδα άγκου δεξαμενής (g NH3-N /m3). Τα χαρακτηριστικά του προς επεξεργασία λύματος δίνεται στον παρακάτω πίνακα, χωρίς να λαμβάνεται υπόψη η αραίωση λόγω της ανακυκλοφορίας.

Πίνακας 5-13. Ποσοτικά και ποιοτικά χαρακτηριστικά λύματος προς αερόβια επεξεργασία

| Ποιοτικά Χαρακτηριστικά Λύματος Αερόβιας | Παράμετρος | Λύματα από Αναερόβιο
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ποσότητα (m3/d)</td>
<td>74,1</td>
<td></td>
</tr>
<tr>
<td>COD (mg/L)</td>
<td>21.500</td>
<td></td>
</tr>
<tr>
<td>BOD5 (mg/L)</td>
<td>9.400</td>
<td></td>
</tr>
<tr>
<td>Ολικό Άζωτο (mg/L)</td>
<td>3.500</td>
<td></td>
</tr>
<tr>
<td>Ηλεκτρική Αγωγιμότητα (mS/cm)</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Ο υπολογισμός του όγκου της δεξαμενής γίνεται για Φορτίο = 250 g NH3-N / m3 και συγκέντρωση μικροοργανισμών MLSS = 2.000mg/L. Η κατασκευή θα είναι ορθογώνια με βάθος 5 μέτρων και ο αερισμός θα πραγματοποιείται με δύο επιφανειακούς μηχανικούς αεριστήρες.

Πίνακας 5-14. Διαστασιολόγηση αερόβιας δεξαμενής

<table>
<thead>
<tr>
<th>Διαστασιολόγηση Αερόβιας Δεξαμενής</th>
<th>Παράμετρος</th>
<th>Τιμή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ποσότητα (m3/d)</td>
<td>74,1</td>
<td></td>
</tr>
<tr>
<td>COD (kg/d)</td>
<td>1.600</td>
<td></td>
</tr>
<tr>
<td>BOD5 (kg/d)</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>Ολικό Άζωτο (kg/d)</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Υπολογισμοί</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Φορτίο</td>
<td>250 g NH3-N /m3</td>
<td></td>
</tr>
<tr>
<td>MLSS</td>
<td>2.000 mg/L</td>
<td></td>
</tr>
<tr>
<td>Ογκός Δεξαμενής</td>
<td>800 m3</td>
<td></td>
</tr>
<tr>
<td>Περίσσεια λάσπης</td>
<td>50-60% του BOD5 = 410kg/d</td>
<td></td>
</tr>
</tbody>
</table>

Οι δεξαμενές αερισμού και απονιτροποίησης λειτουργούν σε συνεργασία για την απομάκρυνση του οργανικού φορτίου και του αξίωματος. Σημαντικός παράγοντας είναι η ανακυκλοφορία των λυμάτων μεταξύ των δύο δεξαμενών ώστε τα αμιζωνιακά και τα νιτρικά ιόντα συνεχώς να υπόκεινται σε νιτροποίηση και απονιτροποίηση αντίστοιχα. Η ανακυκλοφορία εξασφαλίζεται με χρήση αντλίας και ροή 180t/d.

Ανάγκες σε Οξυγόνο

Οι ανάγκες σε οξυγόνο για την οξείδωση των οργανικών ανθρακικών ενώσεων υπολογίζονται βάση του οξυγόνου που χρησιμοποιείται στην οξείδωση των οργανικών και της αμιζωνίας και του οξυγόνου που απαιτείται για την ανάπτυξη νέων κυττάρων, ως εξής:

- Οξυγόνο Οργανικών = Μεταβολισμός του BOD5 + Ενδογενής αναπνοή, όπου:
 - Μεταβολισμός = 0,5-0,55 kg O2/ Kg BOD5,
Αναπνοή = 0,2 Kg/dO2 / Kg MLSS.

Η μεγαλύτερη κατανάλωση οξυγόνου είναι για την οξείδωση των αμμονιακών ενώσεων, σύμφωνα με την αναλογία:

- Οξυγόνο Νιτροποίησης = 4,6× Ν (kg O2 / kg N2).

Επομένως οι συνολικές ανάγκες σε οξυγόνο θα είναι:

- Οξυγόνο = οξυγόνο ανθρακικών + οξυγόνο αζωτούχων,
- Οξυγόνο = 0,55×695Kg BOD₅ + 0,2×2000 Kg MLSS + 4,6× 260kg N₂ = 1980 kg O₂/d

Η οξυγόνωση της δεξαμενής θα επιτυγχάνεται με δύο μηχανικούς επιφανειακούς αεριστήρες. Οι επιφανειακοί αεριστήρες χαρακτηρίζονται από την μηχανική οξυγόνωσης σε kg O2 ανά kWh ή ωριαίο ίππο hph. Μέση τιμή απόδοσης (συντηρητική) για επιφανειακούς αεριστήρες υψηλής ταχύτητας (αξονικής ανάμιξης) είναι τα 1,8 kg O2 ανά kWh.

- Ισχύς Αεριστήρα = (1980 kg O₂/d) / (1,8 kg O2 / kWh) = 1100kW ημερησίως
- Για 16ωρη λειτουργία ⇒ Ισχύς 70kW

Τα βασικά μέρη της δεξαμενής αερισμού συνοψίζονται στον πίνακα:

Πίνακας 5-15. Χαρακτηριστικά δεξαμενής αερισμού

<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Χαρακτηριστικά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεξαμενή υψηλού ρυθμού αερισμού</td>
<td>• Κατασκευή από σκυρόδεμα, χωρητικότητα 1200 m³</td>
</tr>
<tr>
<td></td>
<td>• Διαστάσεις Μ×Π×Υ: 22×11×5μ</td>
</tr>
<tr>
<td></td>
<td>• Μηχανικοί Αεριστήρες, Ισχύς 35kW έκαστος</td>
</tr>
</tbody>
</table>

5.5.8 Δεξαμενή Καθίζησης

Η δεξαμενή καθίζησης τοποθετείται μετά τη βιολογική επεξεργασία για την απομάκρυνση των αιωρούμενων στερεών που δημιουργούνται από τη βιολογική δράση (κροκύδες). Αρχικά τα στερεά αυτά καθίζονται σαν μεμονωμένα μόρια, με σταθερή ταχύτητα, ενώ πάνω από το ορισμένο όριο πυκνότητας συνενώνονται και
καθίζάνουν με προοδευτικά αυξανόμενη ταχύτητα. Τελικά σχηματίζεται στον πυθμένα ενιαίο στρώμα λάσπης που ποικίλει σε πάχος.

Μέρος της καθίζουσας λάσπης επιστρέφει στη δεξαμενή επεξεργασίας ώστε να ρυθμίσει η επιθυμητή συγκέντρωση δραστικής λάσπης στον αντιδραστήρα. Ο ρυθμός ανακυκλοφορίας για συνήθη συστήματα είναι 0,5-1 φορές την ροή εισόδου.

Το σύστημα που θα χρησιμοποιηθεί είναι διαχωριστή τύπου lamella (εικόνα αριστερά), δηλαδή διαχωριστή με παράλληλες πλάκες και ειδικό σχεδιασμό για απομάκρυνση στερεών. Το υγρό της βιολογικής επεξεργασίας εισέρχεται στη συσκευή και αναγκάζεται σε ροή υπό γωνία διαμέσου των παράλληλων πλακών, με χαμηλή ταχύτητα. Με τον τρόπο αυτό επιτυγχάνεται συγκέντρωση των στερεών συμπαθίων στην επάνω επιφάνεια των πλακών και στη συνέχεια καθίζηση στον πυθμένα. Οι διαχωριστές τύπου lamella απαιτούν σημαντικά μικρότερη επιφάνεια συγκριτικά με συμβατικές δεξαμενές καθίζησης.

Η απόσταση μεταξύ των πλακών είναι συνήθως 5 εκατ. Τυπικά η απόδοση του συστήματος είναι 50-60% στον διαχωρισμό των αιωρούμενων στερεών.

Η διαστασιολόγηση του διαχωριστή γίνεται ως εξής:

\[m = \frac{2 \cdot Q \cdot \rho_c + Re \cdot W \cdot \mu}{Re \cdot W \cdot \mu} \]

Οπου,

\[m = \text{αριθμός πλακών} = 36 \]
\[Q = \text{αγκομετρική παροχή λύματος} (m^3/s) = 0,018 \]
\[\rho_c = \text{πυκνότητα λύματος} (kg/m3) \approx 1000 \]
\[Re = \text{αριθμός Reynolds} = 1500 \text{ για στρωτή ροή} \]
\[W = \text{πλάτος πλακών} (m) = 1 \]
\[\mu = \text{ιξώδες λύματος} (kg/m.s) = 0,001 \]
Πίνακας 5-16. Χαρακτηριστικά δεξαμενής καθίζησης

<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Χαρακτηριστικά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεξαμενή καθίζησης</td>
<td>• Κατασκευή από μπετόν και μέταλλο, χωρητικότητα 100 m³</td>
</tr>
<tr>
<td></td>
<td>• Διαστάσεις M×Π×Υ: 8×3×5</td>
</tr>
<tr>
<td></td>
<td>• Πλάκες μεταλλικές, υπό γωνία 45° και απόσταση 5cm</td>
</tr>
<tr>
<td></td>
<td>• Δυναμικότητα 10m³/hr</td>
</tr>
</tbody>
</table>

Περίσσεια λάσπης

Για να διατηρούνται σταθερές συνθήκες στην δεξαμενή βιολογικής επεξεργασίας, η περίσσεια της παραγόμενης λάσπης θα πρέπει να απομακρύνεται. Η απομάκρυνση γίνεται στο σύστημα επίπλευσης με αέρα, όπου καταλήγει μέρος της ανακυκλωφορίας. Η περίσσεια λάσπης ορίζεται στο αναερόβιο αντιδραστήρα όπου βιολογικά φωτιζόταν. Η λάσπη που δημιουργείται εξαρτάται από τη διαθέσιμη τροφή και γενικά σχετίζει:

| Περίσσεια λάσπης = 50-60% του BOD₅ = 0,6*695kg/d = 410 kg/d |
| Συγκέντρωση λάσπης στην καθίζηση ≈ 3% |
| Παροχή περίσσειας = 410*100/3 = 13,7ton/d |
| Απόδοση DAF = 80% επί των στερεών Πορή λάσπης προς DAF = 13,7/0,8 ≈ 17 ton/d |

5.5.9 Δεξαμενή MBR

Η δεξαμενή MBR (Membrane Bioreactor) τοποθετείται μετά την δεξαμενή καθίζησης και αποτελεί την τριτοβάθμια επεξεργασία των λυμάτων. Το προκύπτον αερό μετά την τριτοβάθμια επεξεργασία θα είναι κατάλληλο για χρήση στην άρδευση κτηνοτροφικών φυτών, αφού χλωριωθεί. Στον πυθμένα της δεξαμενής θα τοποθετηθούν σειρές διαχυτών αέρα με τρόπο που εξασφαλίζουν την ομοιόμορφη αερίσμη της δεξαμενής. Μέσα στη ίδια δεξαμενή θα τοποθετηθούν μεμβράνες διαχωρισμού από όπου θα αντλείται καθαρό αερό. Οι μεμβράνες λειτουργούν σαν φίλτρο που διαχωρίζει τα στερεά και ταυτόχρονα εξασφαλίζουν μεγάλη συγκέντρωση ενεργούς φορτίων στη δεξαμενή. Οι μεμβράνες είναι διαμόρφωση λεπτών κούλων ινών (400-450 μm εξωτερική διάμετρο) οι πόροι των οποίων είναι της τάξης των 0,1-0,2μm. Οι μεμβράνες μεμφομένες ινές συγκεντρώνονται σε λειτουργικές μονάδες μεγάλης επιφάνειας που τοποθετούνται μέσα στην δεξαμενή.
Εικόνα 5-4. Εξοπλισμός μονάδας MBR

Μεμβράνες

Η διαστασιολόγηση και ο σχεδιασμός της δεξαμενής γίνεται βάση των υδραυλικών δεδομένων και των στοιχείων που δίνουν οι κατασκευαστές των μεμβρανών. Βάση του παρακάτω πίνακα, μία τυπική λειτουργική μονάδα διαθέτει ικανότητα φίλτρανσης 1-1,2 τόνους την ώρα. Επομένως υπολογίζουμε θα χρειαστούν 60 μονάδες. Η τοποθέτηση των μεμβρανών μέσα στη δεξαμενή γίνεται με τέτοιο τρόπο ώστε οι διαχύτες αέρα να βρίσκονται κάτω από τις μεμβράνες, δημιουργώντας τυρβώδη ροή. Εφόσον το βάθος της δεξαμενής είναι ικανό, οι μονάδες μπορούν να τοποθετούνται μια επάνω από την άλλη.

Πίνακας 5-17. Χαρακτηριστικά λειτουργικής μονάδας MBR

<table>
<thead>
<tr>
<th>Χαρακτηριστικά</th>
<th>Τιμές</th>
</tr>
</thead>
<tbody>
<tr>
<td>Εξωτερική Διάμετρος Ίνας</td>
<td>400-450 μμ</td>
</tr>
<tr>
<td>Μέγεθος Πόρων Ίνας</td>
<td>0,1-0,2 μμ</td>
</tr>
<tr>
<td>Επιφάνεια Πόρων Ίνας</td>
<td>40-50%</td>
</tr>
<tr>
<td>Δυναμικότητα Μονάδας</td>
<td>1-1,2 τόνους/ώρα</td>
</tr>
<tr>
<td>Επιφάνεια Μονάδας</td>
<td>8 m²</td>
</tr>
<tr>
<td>Υποπίεση Λειτουργίας</td>
<td>0,01-0,03 MPa</td>
</tr>
<tr>
<td>Διαστάσεις Μονάδας</td>
<td>523x810x400</td>
</tr>
</tbody>
</table>
Οι λειτουργικές μονάδες θα τοποθετηθούν σε κάθετη διαρρύθμιση τριάδων με απόσταση 0,5 μέτρο η μία από την άλλη. Συνολικά 20 τριάδες θα τοποθετηθούν σε σειρά. Οι ελάχιστες απαιτήσεις των κατασκευαστών για ελεύθερο κενό χώρο μεταξύ των μεμβρανών ορίζουν το ύψος της δεξαμενής να είναι 2,5 μέτρα, το μήκος 4,5 μέτρα και το πλάτος 5 μέτρα. Στην πραγματικότητα η δεξαμενή θα υπερκαλύπτει αυτές τις απαιτήσεις.

Πίνακας 5-18. Χαρακτηριστικές παράμετροι μονάδας MBR

| Χαρακτηριστικά |
|----------------|------------------------|
| Αριθμός μονάδων | 60 |
| Κάθετη διαρρύθμιση | Σε τριάδες ύψους 1,7m |
| Αριθμός τριάδων | 20 |
| Διαστάσεις δεξαμενής | M×Π×Υ:8x5,5x5 |
| Αριθμός διαχυτών | 20 |
| Δυναμικότητα διαχύτη | 7m³/hr |
| Ισχύς Φυσητήρα | 3,5kW |
| Δυναμικότητα Φυσητήρα | 150 m³/hr |

Αντλία

Αντλία αυτοεκκινούμενη (self-priming) χρησιμοποιείται για τη δημιουργία της αναγκαίας υποπίεσης για τη ρόφηση του νερού διαμέσου των πόρων της μεμβράνης. Η υποπίεση κυμαίνεται μεταξύ 0,01 με 0,03 MPa ή 0,1 με 0,3 bar. Οι αντλίες αυτού του τύπου είναι κατάλληλα κατασκευασμένες (συνήθως αντλίες θετικής εκτοπίσεως) να μην εμφανίζουν σπηλαίωση και διαθέτουν υψηλό καθαρό θετικό μανομετρικό ύψος αναρρόφησης (NPSH).

Πίνακας 5-19. Χαρακτηριστικά αυτοεκκινούμενης αντλίας

<table>
<thead>
<tr>
<th>Παροχή</th>
<th>Μανομετρικό Ύψος</th>
<th>NPSH</th>
<th>Ισχύς</th>
</tr>
</thead>
<tbody>
<tr>
<td>6m³/hr</td>
<td>15m</td>
<td>8m</td>
<td>2 hp</td>
</tr>
</tbody>
</table>
5.5.10 Δεξαμενή Χλωρίωσης

Το παραγόμενο νερό μετά την αερόβια επεξεργασία υπόκειται σε απολύμανση με χλωρίωση προκειμένου να εξασφαλιστεί ότι δεν υπάρχουν οποιοδήποτε μικροοργανισμοί που μπορεί να προκαλέσουν προβλήματα στη λειτουργία της μονάδας αντίστροφης όσμωσης. Σαν μέσο χλωρίωσης χρησιμοποιείται υποχλωριώδες νάτριο σε αναλογία 12 γρ./1000 κιλά νερό, με υπολειμματικό χλωρίο περίπου 3ppm (3γρ/1000kg νερό). Ο χρόνος παραμονής στη δεξαμενή πρέπει να είναι ικανός για πλήρη καταστροφή των μικροοργανισμών, συνήθως 30 λεπτά. Η δεξαμενή σχεδιάζεται με εμβολική ροή, η οποία επιτυγχάνεται με χρήση πετασμάτων που κατευθύνουν την κίνηση του νερού.

Πίνακας 5-20. Χαρακτηριστικά δεξαμενής χλωρίωσης

<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Χαρακτηριστικά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεξαμενή χλωρίωσης</td>
<td>• Κατασκευή από μπετόν, χωρητικότητα 100m³</td>
</tr>
<tr>
<td></td>
<td>• Διαστάσεις M×Π×Υ: 8×3×5</td>
</tr>
<tr>
<td></td>
<td>• Τρία πετάσματα κατεύθυνσης της ροής</td>
</tr>
<tr>
<td></td>
<td>• Σύστημα χλωρίωσης 0,7 kg/d</td>
</tr>
</tbody>
</table>

5.5.11 Αντίστροφη Όσμωση

Η αντίστροφη όσμωση είναι μία διεργασία διαχωρισμού των διαλυτών συστατικών του νερού με τη βοήθεια μεμβρανών. Η αντίστροφη όσμωση είναι μία διεργασία με κινητήρια δύναμη την πίεση, η οποία επιτρέπει το διαχωρισμό των διαλυτών συστατικών από το νερό. Η εφαρμοζόμενη πίεση υπονίκει την οσμοτική πίεση του υδατικού διαλύματος με αποτέλεσμα να εξαναγκάζει τη διέλευση του νερού διαμέσου της μεμβράνης, αφήνοντας πίσω τα διαλυτά συστατικά του. Από την αντίστροφη όσμωση προκύπτει νερό πλήρως απαλλαγμένο από διαλυτές και αδιάλυτες προσμίξεις, αφού αφαιρεύεται και μικρά μόρια όπως των αλάτων.

Η διαστασιολόγηση της μονάδας αντίστροφης όσμωσης καθορίζεται από τρεις παράγοντες: 1) Την δυναμικότητα σε καθαρό νερό, 2)Το ποσοστό ανάκτησης, 3)Τα χαρακτηριστικά του νερού. Η άγνωστη παράμετρος είναι η ακριβής χαρακτηρισμός της ποιότητας του νερού, κυρίως ως προς το είδος και τις ποσότητες διαλυμένων αλάτων και άλλων ανόργανων ενώσεων που περιέχονται σε αυτό. Είναι γνωστό ότι το νερό αναμένεται να παρουσιάζει υψηλή ηλεκτρική αγωγιμότητα, όπως το 7.500 μS/cm, και επομένως μπορούμε να εκτιμήσουμε την ολική συγκέντρωση διαλυμένων στερεών TDS=5.000 mg/l.

Βάση της εκτίμησης της ποιότητας του νερού και της επιθυμητής δυναμικότητας της εγκατάστασης μπορεί να γίνει προκαταρκτικός υπολογισμός για τον απαιτούμενο εξοπλισμό. Οι υπολογισμοί στηρίζονται σε
Το αφαλατωμένο νερό θα οδηγείται σε δεξαμενή αποθήκευσης από όπου και θα αντλείται για σκοπούς έκπλυσης στο χοιροστάσιο, ενώ τυχόν περίσσεια θα χρησιμοποιείται για άρδευση καλλιεργειών. Το συμπύκνωμα που θα περιέχει το σύνολο σχεδόν των αλάτων θα απορρίπτεται σε δεξαμενή εξάτμισης, καθώς η υψηλή συγκέντρωση καθιστά απαγορευτική τη χρήση του για άλλους σκοπούς.

5.5.12 Δεξαμενές Νερού
Όπως αναφέρεται προηγουμένως, από το σύστημα αντίστροφης όσμωσης προκύπτουν δύο ρεύματα νερού, το αφαλατωμένο νερό και το συμπύκνωμα των αλάτων. Το αφαλατωμένο νερό θα οδηγείται σε δεξαμενή αποθήκευσης από όπου και θα αντλείται για σκοπούς έκπλυσης στο χοιροστάσιο, ενώ τυχόν περίσσεια θα χρησιμοποιείται για άρδευση καλλιεργειών. Το συμπύκνωμα που θα περιέχει το σύνολο σχεδόν των αλάτων θα απορρίπτεται σε δεξαμενή εξάτμισης. Οι δεξαμενές νερού θα κατασκευαστούν με κατάλληλη διαμόρφωση των δεξαμενών εξάτμισης των χοιρολυμάτων, που αυτή τη στιγμή χρησιμοποιούνται στο χοιροστάσιο, και οι οποίες με την κατασκευή του σταθμού βιολογικής επεξεργασίας πλέον θα είναι ανενεργές.

Η χωρητικότητα της δεξαμενής αποθήκευσης αφαλατωμένου νερού θα είναι 600 κυβικά μέτρα, ικανός όγκος για αποθήκευση του νερού που παράγεται σε χρονική περίοδο περίπου 13 ημερών. Η δεξαμενή θα είναι χωμάτινη και θα διαθέτει επένδυση από μεμβράνη πολυμερούς ώστε να αποτρέπονται οι διαρροές στο
Το σημείο εισροής των αποβλήτων στην δεξαμενή θα είναι περίπου σε απόσταση 30 εκατοστών από την επιφάνεια του επεξεργασμένου απόβλητου. Επίσης για να επιτευχθεί η στεγανότητα των τοιχωμάτων της δεξαμενής με δείκτη υδατοπερατότητας τουλάχιστον 10⁻⁷ cm/sec η δεξαμενή θα διαμορφωθεί στο έδαφος με εκσκαφή και ακολούθως θα επικαλυφθεί με αδιάβροχη μεμβράνη.

Πίνακας 5-22. Χαρακτηριστικά δεξαμενών νερού

<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Χαρακτηριστικά</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεξαμενή αποθήκευσης νερού</td>
<td>• Κατασκευή από χώμα, χωρητικότητα 600 m³</td>
</tr>
<tr>
<td></td>
<td>• Διαστάσεις Μ×Π×Υ: 11×11×5</td>
</tr>
<tr>
<td></td>
<td>• Στεγανοποίηση με μεμβράνη πολυμερούς</td>
</tr>
<tr>
<td>Δεξαμενή εξάτμισης</td>
<td>• Κατασκευή από χώμα, χωρητικότητα 2070 m³</td>
</tr>
<tr>
<td></td>
<td>• Διαστάσεις Μ×Π×Υ: 64×32×1,5</td>
</tr>
<tr>
<td></td>
<td>• Στεγανοποίηση με μεμβράνη πολυμερούς και επιπεδωμένο αργιλικό έδαφος</td>
</tr>
</tbody>
</table>
6 ΑΝΑΛΥΣΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ

6.1 Κυκλοφοριακά Δεδομένα

Φάση Κατασκευής

Κατά τη φάση κατασκευής του έργου αναμένεται αύξηση της κυκλοφοριακής επιβάρυνσης κυρίως κατά το διάστημα που πέφτει το μπετόν στις τσιμέντενιες δεξαμενές, λόγω της κίνησης φορτηγών μεταφοράς μπετόν. Η οικοδομική δραστηριότητα αναμένεται να διαρκέσει 3-4 μήνες από τους 7 συνολικά που υπολογίζονται για το σύνολο του έργου. Τις ημέρες που γεμίζονταν τα καλούπια με τσιμέντο υπολογίζεται μέγιστη κίνηση 6 δρομολογίων μπετονιέρων προς το σταθμό, κατά τις πρωινές ώρες. Επομένως η κυκλοφοριακή επιβάρυνση εκτιμάται ότι θα είναι μικρής διάρκειας και χαμηλής έντασης.

Φάση Λειτουργίας

Κατά τη φάση λειτουργίας του σταθμού δεν αναμένεται καθημερινή κίνηση φορτηγών σχημάτων, πέραν του φορτηγού που θα μεταφέρει περιοδικά την στερεό προϊόν της αναερόβιας επεξεργασίας για χρήση ως εδαφοβελτιωτικό σε αγρούς.

6.2 Σύνδεση με Οδικό Δίκτυο

Το έργο θα εξυπηρετείται από το οδικό δίκτυο που εξυπηρετεί και το χοιροστάσιο της εταιρίας.

6.3 Είδη Υλικών

Το κύριο οικοδομικό υλικό είναι το σκυρόδεμα. Ο αναερόβιος αντιδραστήρας και οι δεξαμενές υποροφούν με εκχέρχωση χώµατος, χωρίς χρήση τσιμέντου, με εποξική επικάλυψη, με χρήση μεμβρανών για υδατοστεγάνωση. Προστατεύτηκαν ηλεκτρογεννήτρια και ηλεκτροαντιδραστήρας, ωστε να μην υπάρχει ηχητική επιβάρυνση από την λειτουργία της.

Τα υπόλοιπα υλικά του έργου είναι κυρίως οι μεταλλικές και πλαστικές σωληνώσεις κυκλοφορίας των λυμάτων, οι μεταλλικοί αναδευτήρες του βιοαντιδραστήρα, οι μεταλλικοί συνήθως αισθητήρες έλεγχου της διεργασίας και το πλαστικό υλικό κατασκευής του θόλου του αντιδραστήρα. Κοινός χάλυβας θα χρησιμοποιηθεί στις μεταλλικές κατασκευές, με εποξική επικάλυψη για προστασία από την διαβρωτική δράση των λυμάτων.
Πίνακας 6-1. Σημαντικότερες εγκαταστάσεις σταθμού και κατασκευαστικά υλικά

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Περιγραφή</th>
<th>Χαρακτηριστικά</th>
</tr>
</thead>
</table>
| 1. | Δεξαμενή Εξισορρόπησης | • Χωρητικότητα 150m³
• Προϋπάρχουσα δεξαμενή |
| 2. | Αναερόβιος Αντιδραστήρας | • Χωρητικότητα 3.500m³
• Εκχέρσωση χώματος 3.500 m³
• Πλαστικό εξωτερικό κάλυμμα 920m²
• Μεμβράνη υδατοστεγάνωσης 1.100 m² |
| 3. | Δεξαμενή Απονιτροποίησης | • Χωρητικότητα 1200 m³
• Ποσότητα σκυροδέματος 170m³
• Εκχέρσωση χώματος 910 m³ |
| 4. | Δεξαμενή Αερισμού | • Χωρητικότητα 1200 m³
• Ποσότητα σκυροδέματος 170m³
• Εκχέρσωση χώματος 910 m³ |
| 5. | Δεξαμενή Νερού | • Χωρητικότητα 600m³
• Εκχέρσωση χώματος 600 m³
• Μεμβράνη υδατοστεγάνωσης 120m² |
| 6. | Δεξαμενή Εξάτµισης | • Χωρητικότητα 2070m³
• Προϋπάρχουσα δεξαμενή |
| 7. | Υποστατικό ελέγχου / γεννήτριας | • Κατασκευή από σκυρόδεμα και πάνελ πολυουρεθάνης
Διαστάσεις: ΜxΠxΥ = 8 x 3 x 4.6μ |
| 8. | Ηλεκτρομηχανολογικός Εξοπλισμός | • Κατασκευή κυρίως από ανοξείδωτο χάλυβα
• Πλαστικά προστατευτικά μέρη |
| 9. | Υδραυλικά | • Μεταλλικές βαλβίδες απομόνωσης
• Ανοξείδωτες σωληνώσεις και εν μέρει από PVC |

6.4 Θόρυβος και Δονήσεις

Φάση Κατασκευής

Στη φάση κατασκευής του έργου αναμένεται ηχητική επιβάρυνση από τις χωματουργικές εργασίες. Οι χωματουργικές εργασίες υπολογίζεται να έχουν διάρκεια περίπου ενός μήνα σε καθημερινή βάση και επιπλέον ένα μήνα σε περιοδική βάση. Το επίπεδο θορύβου για εκσκαφέα 5 τόνων είναι στα 93 dB σε απόσταση ενός μέτρου. Η λειτουργία δύο εκσκαφέων είναι αρκετή για την εκτέλεση του έργου. Ο χειριστής του εκσκαφέα θα πρέπει να λαμβάνει ατομικά μέτρα προστασίας (οτοασπίδες).

Φάση Λειτουργίας
Στη φάση λειτουργίας της εγκατάστασης η κύρια πηγή θορύβου θα είναι από την λειτουργία της γεννήτριας ηλεκτρικού ρεύματος. Το επίπεδο θορύβου της γεννήτριας ισχίου 135 kW είναι περίπου 95 dB. Το μέγιστο αποδεκτό όριο θορύβου από την Ευρωπαϊκή Ένωση, για 8ωρη έκθεση του ανθρώπου είναι τα 87 dB. Λόγω του σχετικά υψηλού επιπέδου θορύβου, η ηλεκτρογεννήτρια θα βρίσκεται σε κλειστό ηχομοιομένο εμπορευματοκιβώτιο που θα ελαχιστοποιεί την εκπομπή θορύβου. Οι εργαζόμενοι που θα εισέρχονται εντός του εμπορευματοκιβωτίου της γεννήτριας εν ώρα λειτουργίας θα πρέπει να λαμβάνουν μέτρα προστασίας (ωτοασπίδες).

Κατά τη φάση λειτουργίας αναμένεται μικρής κλίμακας διακίνησης οχημάτων, για την απομάκρυνση των στερεών παράγωγων του σταθμού. Με βάση τις εκτιμήσεις της μελέτης σε ότι αφορά τις ποσότητες παραγόμενου εδαφοβελτιωτικού, αναμένεται η κίνηση ενός φορτηγού κάθε εβδομάδα. Το επίπεδο θορύβου κινούμενου φορτηγού οχήματος είναι 77 dB. Επίσης, περιστασιακά θα εισέρχονται του έργου διάφορα οχήματα επισκεπτών και συνεργείων συντήρησης.

Φάση Αποζήλωσης

Το μεγαλύτερο μέρος κατασκευών θα είναι υπόγειο και επομένως οι τσιμεντένιες δεξαμενές θα επιχωματωθούν με την λήξη της ζωής του έργου. Ο χρόνος αποζήλωσης υπολογίζεται σύντομος, στο ένα μήνα, με χρήση εκσκαφών και φορτηγών οχημάτων για απομάκρυνση αδρανών υλικών.

6.5 Ανάγκες σε Νερό

Φάση Κατασκευής

Κατά τη φάση κατασκευής θα χρησιμοποιηθούν ποσότητες νερού για τη διαβολή του εδάφους πριν τη σκυροδέσια της δαπεδόπλακας και κατά τις σκυροδέσιες της αναδομής για τη διαβολή του σκυροδέματος. Επίσης, νερό θα καταναλώνεται από τους εργαζόμενους στο εργοτάξιο για πόση και για σκοπούς καθαριότητας, σε ποσότητα 30 λίτρα νερό ημερησίως ανά άτομο.

Φάση Λειτουργίας

Κατά τη φάση λειτουργίας θα χρησιμοποιείται νερό για πόση από τους εργαζόμενους και στους χώρους υγεινής, δηλαδή αποχωρητήριο, νυστήρας και μπάνιο. Νερό που χρησιμοποιείται εντός του σταθμού ή για έκπλυση του χαροστασίου θα αντλείται από τη δεξαμενή επεξεργασμένου νερού του σταθμού. Επομένως ο σταθμός δεν θα επιβαρύνει τους υδατικούς φυσικούς πόρους. Αντίθετα θα παράγει καθαρό νερό κατάλληλο για άρδευση ή και χρήση εντός των υποστατικών.

Φάση Αποζήλωσης
Δεν αναμένεται να προκύψουν ανάγκες σε νερό κατά την αποζήλωση της μονάδας, παρά μόνο για σκοπούς διαβροχής του εδάφους και αποφυγή έκλυσης σκόνης.

6.6 Ανάγκες σε Ενέργεια

Φάση Κατασκευής

Οι ενεργειακές ανάγκες που παρουσιάζονται αφορούν τη λειτουργία μηχανημάτων, όπως ηλεκτροκινητήρες, δράπανα, κόπτες μετάλλων και σάγες. Οι συγκεκριμένες ανάγκες καλύπτονται από το υφιστάμενο χοιροστάσιο.

Φάση Λειτουργίας

Κατά τη φάση λειτουργίας οι ενεργειακές ανάγκες που παρουσιάζονται, καλύπτονται από την ενέργεια που παράγεται από τον ιδίο το σταθμό. Συγκεκριμένα ο σταθμός θα παράγει ~ 135kW ηλεκτρική ενέργεια που θα χρησιμοποιούνται για ιδία χρήση στο σταθμό επεξεργασίας και θα καλύπτουν το μεγαλύτερο μέρος των ενεργειακών αναγκών του χοιροστασίου. Επίσης η παραγόμενη θερμική ενέργεια (190kW) από τη γεννήτρια θα χρησιμοποιείται για τη θέρμανση των υποστατικών του χοιροστασίου, υποκαθιστώντας τη χρήση πετρελαίου.

Φάση Αποξήλωσης

Κατά τη φάση αποξήλωσης του σταθμού χρησιμοποιούνται διάφορα ηλεκτρικά μηχανήματα, τα οποία θα ηλεκτροδοτούνται από το χοιροστάσιο.

6.7 Αέρια Απόβλητα

Φάση Κατασκευής

Η εκπομπή αερίων ρύπων στη φάση της κατασκευής θα προέλθει από:

- τα βαρέα οχήματα που θα χρησιμοποιηθούν για τη μεταφορά των υλικών κατασκευής και των προϊόντων εκσκαφής.
- από τη χρήση των απαραίτητων μηχανημάτων για την κατασκευή του σταθμού.
- από ανοικτές πηγές (π.χ. σωρούς αποθήκευσης) με τη δράση του ανέμου.
- από την ηλεκτρογεννήτρια diesel.

Οι αέριοι ρύποι είναι κυρίως στερεά σωματίδια (PM10) και βεβαίως CO, HC, SO₂ και NO₃ από τα οχήματα και τα μηχανήματα. Οι τύποι των οχημάτων που χρησιμοποιούνται είναι εκσκαφείς, φορτηγά οχήματα και επιβατικά οχήματα για τη μεταφορά προσωπικού. Εντούτοις, εξαιρουμένης της χρονικής περιόδου των
οικοδομικών εργασιών, ο αριθμός των οχημάτων θα είναι μικρός και οι συνολικές εκπομπές αερίων μάλλον αμελητέες.

Πίνακας 6-2. Υπολογισμός Παραγόμενων Ποσοτήτων Αέριων Αποβλήτων από Οχήματα

<table>
<thead>
<tr>
<th>Πηγή Εκπομπής (Μηχάνημα, Εγκατάσταση)</th>
<th>Ουσία / ρύπος</th>
<th>Ρυθμός Εκπομπής (kg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φορτηγό</td>
<td>CO</td>
<td>0,817</td>
</tr>
<tr>
<td></td>
<td>NO₃</td>
<td>1,890</td>
</tr>
<tr>
<td></td>
<td>SO₂/SO₃</td>
<td>0,206</td>
</tr>
<tr>
<td></td>
<td>Σωματίδια</td>
<td>0,116</td>
</tr>
<tr>
<td>Αναμικτήρες σκυροδέματος</td>
<td>CO</td>
<td>0,092</td>
</tr>
<tr>
<td></td>
<td>NO₃</td>
<td>0,375</td>
</tr>
<tr>
<td></td>
<td>SO₂/SO₃</td>
<td>0,034</td>
</tr>
<tr>
<td></td>
<td>Σωματίδια</td>
<td>0,026</td>
</tr>
<tr>
<td>Ανυψωτικός γερανός</td>
<td>CO</td>
<td>0,092</td>
</tr>
<tr>
<td></td>
<td>NO₃</td>
<td>0,037</td>
</tr>
<tr>
<td></td>
<td>SO₂/SO₃</td>
<td>0,034</td>
</tr>
<tr>
<td></td>
<td>Σωματίδια</td>
<td>0,026</td>
</tr>
</tbody>
</table>

Φάση Λειτουργίας

Αέρια αποβλήτα κατά τη φάση λειτουργίας θα προκύπτουν από τη λειτουργία της ηλεκτρογεννήτριας. Το διοξείδιο του άνθρακα που παράγεται κατά τη λειτουργία της γεννήτριας προέρχεται από ανανέωσιμη πηγή ενέργειας (βιοµάζα) και σε μικρό ποσοστό (15%) από πετρελαίο. Το διοξείδιο του άνθρακα που εκπέμπεται από τη γεννήτρια δε συνιστά πρόσθετη παραγωγή άνθρακα και συγχρόνως μειώνει τις ποσότητες ορυκτού άνθρακα που θα καταναλώνονταν στο χοιροστάσιο εάν δεν πραγματοποιούνταν το έργο. Η ετήσια ποσότητα άνθρακα που εξουδετείται υπολογίζεται ως εξής:

Σύμφωνα με την U.S. Environmental Protection Agency παράγονται 2778 g CO₂ ανά λίτρο πετρελαίου. Η συνολική κατανάλωση του χοιροστασίου σε ηλεκτρισμό ανέρχεται στις 210.000 kWh/έτος και η κατανάλωση πετρελαίου θέρμανσης στα 32.000 λίτρα ντίζελ/έτος. Η συνολική αντιστοιχία της ενέργειας είναι 102.000 λίτρα ντίζελ/έτος.

\[
\frac{102.000 \text{ litres petroleiou}}{\text{έτος}} \times \frac{2778 \text{gCO}_2}{\text{l petroleiou}} = 300 \text{ tn CO}_2 / \text{ετώς}
\]
Δηλαδή με τη λειτουργία του έργου θα μειώνονται οι εκπομπές CO₂ κατά 300 tn / έτος.

Φάση Αποζήλωσης

Όπως και στη φάση κατασκευής λόγω της μικρής έκτασης των κατασκευών του έργου, ο αριθμός των οχημάτων που αναμένεται να χρησιμοποιηθούν για την αποζήλωση θα είναι μικρός και οι εκπομπές αερίων μάλλον αμελητέες.

6.8 Υγρά Απόβλητα

Φάση Κατασκευής

Οι πηγές υγρών αποβλήτων στο χώρο της μονάδας κατά την κατασκευή του έργου είναι κυρίως τα αστικά λόματα από τους εργαζόμενους. Στον πίνακα που ακολουθεί, παρατίθενται οι υπολογισμοί των παραγομένων υγρών αστικών αποβλήτων από τους εργαζόμενους στο εργοτάξιο. Οι υπολογισμοί έγιναν με βάση τα διαθέσιμα στοιχεία εκτίμησης και σύμφωνα με τις ακόλουθες παραδοχές:

- Κάθε εργαζόμενος παράγει 30 λίτρα υγρών αποβλήτων ανά ημέρα.
- Απαιτείται συνεργείο 4 ατόμων για την αποπεράτωση του έργου, συν ο επιβλέπων μηχανικός.

Πίνακας 6-3. Υπολογισμός Παραγόμενων Ποσοτήτων Υγρών Αστικών Αποβλήτων

<table>
<thead>
<tr>
<th>Παραγωγή</th>
<th>ΕΡΓΑΖΟΜΕΝΟΙ</th>
<th>x 30 lt/άτομο/ημέρα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μέση ημερήσια</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>ΣΥΝΟΛΟ (m³/ημέρα)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ποσότητα υγρών αστικών αποβλήτων σε m³</td>
<td>0,15</td>
<td></td>
</tr>
</tbody>
</table>

Με βάση τους προαναφερθέντες υπολογισμούς, καταρτίζεται ο παρακάτω Πίνακας παροχών και φορτίων των αστικών υγρών αποβλήτων.

Πίνακας 6-4. Υπολογισμός Χαρακτηριστικών Υγρών Αστικών Αποβλήτων

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>(\text{BOD}_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αριθμός Εργαζόμενων</td>
<td>5</td>
</tr>
<tr>
<td>Μέση ημερήσια παραγωγή (m³/ημ)</td>
<td>0,15</td>
</tr>
<tr>
<td>Συγκεντρώσεις (gr/εργαζόμενο/ημέρα)</td>
<td>65</td>
</tr>
</tbody>
</table>
Φάση Λειτουργίας

Κατά τη φάση λειτουργίας, θα υπάρχει προσωπικό που θα διαχειρίζεται το σταθμό. Ο αριθμός των ατόμων που θα απασχολούνται σε καθημερινή βάση υπολογίζεται στους 1. Τα αστικά απόβλητα του εργαζόμενου στο σταθμό υπολογίζονται με τον ίδιο τρόπο σύμφωνα με τους παραπάνω πίνακες.

Επιπλέον, η μονάδα αντίστροφης οσμώσης θα παράγει 11,5 κ.μ νερό ημερησίως με υψηλή συγκέντρωση σε άλατα, το οποίο θα οδηγείται σε δεξαμενή εξάτμισης, καθώς είναι ακατάλληλο για άλλη χρήση.

Φάση Αποξήλωσης

Με την ίδια μεθοδολογία όπως κατά την φάση κατασκευής, τα υγρά απόβλητα που θα προκύψουν κατά τη φάση αποξήλωσης θα προέρχονται κυρίως από το συνεργείο που θα αναλάβει την εργασία. Υπολογίζεται ότι θα απαιτηθεί ένα συνεργείο 3 ατόμων και εργασία χρονικής διάρκειας 4 εβδομάδων.

6.9 Στερεά Απόβλητα

Φάση Κατασκευής

Κατά τη διάρκεια κατασκευής των έργων οι κύριες πηγές αποβλήτων είναι η λειτουργία του εργοταξίου και οι εκχωματώσεις και εκσκαφές που θα λάβουν χώρα. Οι παραγόμενες ποσότητες χωμάτων υπολογίζονται συνολικά στα ~7.500m³ και προέρχονται από την εκχέρσωση του εδάφους στα σημεία που θα κατασκευαστούν οι ημιμικρανείς δεξαμενές (Πίνακας 6-1). Το χώμα θα χρησιμοποιηθεί για την διαμόρφωση του περιβάλλοντος χώρου και εάν υπάρξει περίσσεια προς διάθεση τότε θα μεταφερθεί σε ενδεδειγμένο σημείο απόρριψης.

Επιπρόσθετα, παράγονται απορρίμματα από το εργατικό προσωπικό. Τα παραγόμενα απορρίμματα από τους εργάτες του εργοταξίου αφορούν πολύ μικρές ποσότητες οι οποίες θα συγκεντρωνούνται στο χώρο του εργοταξίου και θα μεταφέρονται περιοδικά στην κοινότητα Ακακίου για απόρριψη, σε ενδεδειγμένο χώρο.

Στη μονάδα απασχολούνται κατά τη φάση κατασκευής κατά μέσο όρο 5 άτομα ημερησίως, ενώ κάθε εργαζόμενος παράγει 1kg/άτομο/ημέρα στερεών αποβλήτων ανά ημέρα.

<table>
<thead>
<tr>
<th>Μέγιστες ποσότητες (kg/ημέρα)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>70</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td>BOD₃</td>
<td>0,32</td>
</tr>
<tr>
<td>SS</td>
<td>0,35</td>
</tr>
<tr>
<td>N</td>
<td>0,25</td>
</tr>
</tbody>
</table>

| Μέγιστες ποσότητες (kg/ημέρα) |
|-----------------------------|--|
| SS | 70 |
| N | 5 |
| BOD₃ | 0,32|
| SS | 0,35|
| N | 0,25|
Φάση Λειτουργίας
Οι ποσότητες των στερεών αποβλήτων που θα παράγονται κατά τη λειτουργία του σταθμού είναι κυρίως το χωνεμένο στερεό υλικό (εδαφοβελτιωτικό). Το στερεό προϊόν αποτελεί καλή ποιότητας εδαφοβελτιωτικό και θα διατεθεί σε γεωργικές καλλιέργειες. Ωστόσο θα πρέπει να ελέγχεται ο ρυθμός διάθεσης του, σύμφωνα με τη νομοθεσία για τις επιπλέονες ποσότητες αζώτου ανά δεκάριο γης (17kg N/δεκάριο/χρόνο).

Φάση Αποξήλωσης
Κατά την αποξήλωση της μονάδας δεν αναμένεται να προκύψουν σημαντικές ποσότητες μπαζών ή άλλων στερεών αποβλήτων. Οι υπόγειες δεξαμενές θα επιχωματωθούν και ο χώρος θα τοποτεχνηθεί.
7 ΕΚΤΙΜΗΣΗ ΤΩΝ ΕΠΙΠΤΩΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΩΝ

7.1 Εισαγωγή

Ως ‘Περιβαλλοντική Επίπτωση’ ορίζεται η μεταβολή των περιβαλλοντικών συνθηκών ή ισοδύναμα η μεταβολή των παραμέτρων του περιβάλλοντος (φυσικού και ανθρωπογενούς) που επικρατούν σε μια περιοχή.

Η μεταβολή ενδέχεται να έχει θετικό ή αρνητικό χαρακτήρα (δηλαδή να αναβαθμίζει ή να υποβαθμίζει την ποιότητα της συγκεκριμένης περιβαλλοντικής παραμέτρου), να είναι μακροχρόνια ή βραχυχρόνια, αναστρέψιμη ή μόνημη, άμεση ή έμμεση.

Απαραίτητη προοπόθεση αποδοχής ενός έργου είναι οι επιπτώσεις να μην καταλήγουν σε μόνιμες βλάβες του περιβάλλοντος, ενώ οι προκαλούμενες ενδιάμεσες μεταβολές να συντελούνται με τέτοιο ρυθμό ώστε να προλαμβάνει το περιβάλλον να της απορροφήση. Σκοπός του έργου είναι να μειώσει την επιβάρυνση που το περιβάλλον υφίσταται στο παρόν ή που θα υποστεί στο μέλλον αν το έργο αυτό δεν κατασκευαστεί, ενώ συγχρόνως θα πρέπει να συνιστά μια τεχνοοικονομική βιώσιμη επένδυση.

Επομένως, προκειμένου να διενεργηθεί εκτίμηση των περιβαλλοντικών επιπτώσεων ενός έργου, πρέπει πρώτα να καθοριστούν οι παράμετροι του περιβάλλοντος οι οποίες επηρεάζονται και κατόπιν να αξιολογηθούν οι προκαλούμενες μεταβολές της ποιότητάς τους.

Εν τέλει, μελετώνται οι ενέργειες, τα μέτρα και οι επανορθωτικές δράσεις που θα πρέπει να ληφθούν προς μετριασμό ή απάλειψη των επιπτώσεων.

Λειτουργία του συστήματος, ανθρώπινου δυναμικού και ασφάλειας

Οι απαιτήσεις του συστήματος σε ανθρώπινο δυναμικό δεν είναι μεγάλες, αφού θα είναι πλήρους αυτοματοποιημένο με ηλεκτρονικά συστήματα ελέγχου. Μόνο ένα άτομο θα είναι απαραίτητο για την λειτουργία του συστήματος με εξαίρεση περιόδους συντήρησης, όπου άλλα άτομα ειδικά εκπαιδευμένα για την συντήρησή τους εξειδικευμένων μηχανημάτων να εισέρχονται του χώρου λειτουργίας του συστήματος.

Για την αποφυγή δυστυχημάτων και τη διασφάλιση της υγείας των άτομων που θα εργάζονται εντός του χώρου του συστήματος, θα ληφθούν όλα τα απαραίτητα μέτρα ασφάλειας, ώστε να μην υπάρχει κίνδυνος εκρήξεων ή εκπομπής επικίνδυνων για την ανθρώπινη υγεία ουσιών.
Χρήση Βέλτιστων Διαθέσιμων Τεχνικών

Για τον σχεδιασμό του συστήματος έχουν ληφθεί υπόψη, όπως είναι δυνατό οι Βέλτιστες Διαθέσιμες Τεχνικές που αφορούν τέτοιου είδους συστήματα. Οι πιο συνηθισμένες Βέλτιστες Διαθέσιμες Τεχνικές για την επεξεργασία αποβλήτων, όπως προβλέπονται και από το σχετικό έγγραφο της Ευρωπαϊκής Επιτροπής (Best Available Techniques for the Waste treatment Industries, May 2006) έχουν περιγραφεί σε προηγούμενο κεφάλαιο (§5.3).

Η ανάλυση που έχει προηγηθεί για την κατασκευή και λειτουργία του σταθμού επεξεργασίας χοιρολομάτων συνοψίζεται σε αυτό το κεφάλαιο με τη χρήση πινάκων, όπου παρουσιάζονται οι πιθανές περιβαλλοντικές επιπτώσεις του προς μελέτη έργου. Ο βαθμός επηρεασμού του περιβάλλοντος μελετάται τόσο για την φάση κατασκευής όσο και κατά τη λειτουργία και αποζήμιωση της μονάδας. Επίσης, αναλύονται οι περιβαλλοντικές επιπτώσεις της παρούσας διαδικασίας διαχείρισης των αποβλήτων και τα περιβαλλοντικά οφέλη της ηλεκτροπαραγωγής από ανανεώσιμες πηγές ενέργειας.
7.2 Φάση Κατασκευής του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ολική απώλεια γης</td>
<td>Η ολική έκταση γης, που θα καταλάβουν οι εγκαταστάσεις του βιολογικού σταθμού είναι αμελητέα.</td>
<td>Αμελητέες, Τοπικού χαρακτήρα</td>
</tr>
<tr>
<td>Οδικό δίκτυο</td>
<td>Η πρόσβαση στις εγκαταστάσεις εξασφαλίζεται από υπάρχον τοπικό δρόμο που εξυπηρετεί το χοιροστάσιο.</td>
<td>Καμία επίπτωση.</td>
</tr>
<tr>
<td>Κυκλοφοριακή επιβάρυνση</td>
<td>Στο υπάρχον οδικό δίκτυο θα υπάρξει περιορισμένη αύξηση του κυκλοφοριακού ύφεση του κυκλοφοριακού φόρτου λόγω της διακίνησης των εργαζομένων, φορτηγών οχημάτων και των υλικών κατασκευής.</td>
<td>Μικρές, Βραχυπρόθεσμες, Αρνητικές.</td>
</tr>
<tr>
<td>Τοπογραφία</td>
<td>Δεν θα υπάρξει αλλαγή ανάγλυφου. Οι δεξαμενές θα είναι κυρίως ημιυπόγειες και το ορατό τμήμα θα είναι μέγιστο 1,2 μέτρα πάνω από το έδαφος.</td>
<td>Πολύ μικρές, Τοπικού Χαρακτήρα, Μόνιμες, Αρνητικές.</td>
</tr>
<tr>
<td>Έδαφος</td>
<td>Το χώμα που θα προκύψει από τις εκσκαφές για την κατασκευή των έργων υποδομής θα χρησιμοποιηθεί στη διαμόρφωση επιφανειών μέσα στα έργα και γύρω από αυτά, το δε υπολειπόμενο θα μπορεί να διατεθεί σε εγκεκριμένο χώρο. Ο υπό μελέτη χώρος μπορεί να προσεγγιστεί διαμέσου του υφιστάμενου χωμάτινου δρόμου και ως εκ τούτου δεν απαιτούνται χωματοστρωτικές εργασίες για διάνοιξη δρόμου ή για επέκταση του υφιστάμενου. Ωστόσο ενδέχεται να ρυπανθεί τοπικά το έδαφος με Μικρές, Βραχυχρόνιες, Αρνητικές, Τοπικού χαρακτήρα.</td>
<td></td>
</tr>
</tbody>
</table>
7.2 Φάση Κατασκευής του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Χωματουργικές εργασίες (αναφορικά με τον κίνδυνο ρύπανσης των νερών, του εδάφους, της ατμόσφαιρας, του θόρυβο, της δονήσεως, το φωτισμό, τη θερμότητα, την ακτινοβολία)</td>
<td>Κατά την κατασκευή της μονάδας οι χωματουργικές εργασίες είναι αδύνατο να έχουν οποιαδήποτε αρνητική επίπτωση στο περιβάλλον της περιοχής μιας και η έκταση των έργων είναι περιορισμένη. Θα διασφαλιστεί η περίπτωση ρύπανσης από ατύχημα ή εφαρμογής κακών πρακτικών από τα μηχανήματα κατασκευής (πχ. Λάδια, κλπ.) με κατάλληλα μέτρα. Ακόμη, η πιθανότητα ρύπανσης από πετρέλαια και λάδια των μηχανημάτων κατασκευής των έργων, είναι αμελητέα λόγω της μικρής κλίμακας του έργου.</td>
<td>Μικρές, Βραχυχρόνιες, Αρνητικές.</td>
</tr>
</tbody>
</table>

| Αδράνη και άρχηστα υλικά από την αποξήλωση | Ο όγκος των άρχηστων αδρανών υλικών (μπάζα) που θα προκύψουν θα είναι πολύ μικρός. Τα άρχηστα υλικά θα απορριφθούν σε εγκεκριμένο χώρο. | Μικρές, Αρνητικές, Βραχυχρόνιες. |

| θόρυβος και δονήσεις | Κύρια πηγή θορύβου είναι η λειτουργία εκσκαφών για εκχέρσωση γης όπως θα τοποθετηθούν οι δεξαμενές του έργου. Ο απαιτούμενος χρόνος των χωματουργικών εργασιών εκτιμάται στις 4-6 εβδομάδες. Μικρότερης έκτασης πηγή θορύβου προκύπτει από την κίνηση φορτηγών οχημάτων μεταφοράς υλικών και εξοπλισμού στο εργοτάξιο, με συχνότητα 1-2 την εβδομάδα. | Μικρές, Αρνητικές, Βραχυπρόθεσμες |
7.2 Φάση Κατασκευής του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Χρήση νερού</td>
<td>Μικρές ποσότητες νερού θα απαιτηθούν για τις οικοδομικές εργασίες και την καταβροχή του εδάφους προς αποφυγή δημιουργίας σκόνης. Για τους σκοπούς αυτούς θα χρησιμοποιηθεί νερό ύδρευσης του χοιροστασίου.</td>
<td>Αμελητέες, Αρνητικές, Βραχυπρόθεσμες</td>
</tr>
<tr>
<td>Χρήση ενέργειας</td>
<td>Κατά τη φάση κατασκευής οι ενεργειακές ανάγκες που παρουσιάζονται, καλύπτονται από την ηλεκτρική σύνδεση του υφιστάμενου χοιροστασίου.</td>
<td>Αμελητέες, Βραχυπρόθεσμες, Αρνητικές</td>
</tr>
<tr>
<td>Χρήσεις γης</td>
<td>Η κατασκευή του έργου θα γίνει στη Γεωργική Ζώνη Γ3 σε τεμάχιο γειτονικό με το χοιροστάσιο της εταιρείας. Η χρήση γης είναι γεωργοκτηνοτροφική και δεν επηρεάζεται από τη μελετώμενη ανάπτυξη.</td>
<td>Καμιά επίπτωση</td>
</tr>
<tr>
<td>Είδη υλικών</td>
<td>Μπετόν, σκυρόδεμα, μεταλλικές και πλαστικές σωληνώσεις, προστατευτικές επικαλύψεις, ηλεκτρολογική εγκατάσταση, μεταλλικές βαλβίδες και σύστημα ελέγχου θα αποτελούν τα κύρια είδη υλικών που θα απαιτηθούν. Τα υλικά είναι όλα ανακυκλώσιμα εκτός των μπάζων και των προστατευτικών επιφανειών, τα οποία είναι αδρανή.</td>
<td>Μικρές, Αρνητικές</td>
</tr>
<tr>
<td>Ποιότητα νερόν</td>
<td>Τα έργα δεν επηρεάζουν τον υδροφόρο ορίζοντα, λόγω της μικρής επιφάνειας που καταλαμβάνουν.</td>
<td>Καμιά επίπτωση</td>
</tr>
<tr>
<td>Λέρα ρύπανση</td>
<td>Αναμένεται έκλυση σκόνης από τα δρομολόγια των οχημάτων διαμέσου του χωματόδρομου. Ακόμη, η κατά τη διάρκεια των κατασκευαστικών εργασιών, οι οποίες θα αντιμετωπισθούν με την τακτική διαβροχή του χώρου, οι εκλύόμενες ποσότητες και αλλεργιών θεωρούνται</td>
<td>Μικρές, Αρνητικές, Βραχυπρόθεσμες, Τοπικού χαρακτήρα</td>
</tr>
</tbody>
</table>
7.2 Φάση Κατασκευής του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υγρά απόβλητα</td>
<td>Για την ανέγερση της εν λόγω ανάπτυξης αναμένεται να απασχοληθούν στο εργοτάξιο 5 άτομα την ημέρα για την ολοκλήρωση των εργασιών. Για τους εργαζόμενους στο εργοτάξιο θα γίνουν υγειονομικές διευθετήσεις ώστε να μην προκληθούν περιβαλλοντικά προβλήματα από την διάθεση των υγρών αποβλήτων. Σε εργοτάξια αυτού του είδους, ο ανώτατος όγκος υγρών αποβλήτων που παράγονται υπολογίζεται ημερησίως 30 lt. Με βάση την παραπάνω παραδοχή οι εκτιµώµενες ποσότητες παραγόµενων υγρών αποβλήτων στο στάδιο της κατασκευής του έργου υπολογίζονται 150 lt/day.</td>
<td>Πολύ μικρές, Βραχυχρόνιες, Αρνητικές</td>
</tr>
<tr>
<td>Εργασιακές θέσεις</td>
<td>Η κατασκευή των έργων θα δημιουργήσει νέες θέσεις εργασίας.</td>
<td>Μικρές, Θετικές, Βραχυχρόνιες</td>
</tr>
<tr>
<td>Αισθητική τοπίου</td>
<td>Η χρήση της είναι γεωργοκτηνοτροφική και οι εγκαταστάσεις θα είναι χαμηλού ύψους. Ο βιολογικός σταθμός δεν θα επηρεάσει την αισθητική της περιοχής.</td>
<td>Ελάχιστες, Μόνιμες, Αρνητικές</td>
</tr>
<tr>
<td>Χλωρίδα – Πανίδα</td>
<td>Η χλωρίδα και η πανίδα θα επηρεαστεί τοπικά στο τεμάχιο που θα εγκατασταθεί το έργο, ενώ δεν αναμένεται καμία επίπτωση στην ευρύτερη περιοχή.</td>
<td>Μικρή, Τοπική</td>
</tr>
<tr>
<td>Άνθρωποι Ανακυκλώσιμοι</td>
<td>Η παρουσία των έργων κατασκευής του σταθμού επεξεργασίας αποβλήτων θα αποτελέσει χαμηλού ύψους, οι εκπρόσωποι θα επηρεαστούν μικρά.</td>
<td>Αμελητές, Βραχυχρόνιες</td>
</tr>
</tbody>
</table>
7.2 Φάση Κατασκευής του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑКА ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ασφάλεια και υγεία</td>
<td>δεν δημιουργεί αναστολή της λειτουργίας του ανθρωπογενούς περιβάλλοντος. Δεν αναμένονται αρνητικές οικονομικές επιπτώσεις από την κατασκευή του σταθμού στην περιοχή επιρροής ούτε σημαντική υποβάθμιση της αξίας της περιοχής.</td>
<td></td>
</tr>
</tbody>
</table>

Ο παραγόμενος θόρυβος κατά τις κατασκευαστικές εργασίες, θα επηρεάσει τους εργαζόμενους τόσο στο εργοτάξιο όσο και στο χοιροστάσιο. Ωστόσο, σε περιπτώσεις έντονης ηχούπανσης οι εργαζόμενοι θα εφοδιάζονται με ωτοασπίδες. Επίσης θα ανακύψει θορυβοκατάθλιψη με την εκλεισθή σκόνης οπό οπό θα αντιμετωπισθεί με τη χορήγηση ιδικής μάσκας στους εργαζόμενους. Επιπλέον θα καταρτισθεί σχέδιο ασφάλειας και υγείας, ούτως ώστε να ληφθούν όλα τα απαραίτητα μέτρα για την ελαχιστοποίηση των κινδύνων εκδήλωσης εργατικών ατυχημάτων.

| ΠΕΡΙΟΡΙΣΜΕΝΕΣ, ΑΡΝΗΤΙΚΕΣ, ΒΡΑΧΥΧΡΟΝΙΕΣ, ΤΟΠΙΚΟ ΧΑΡΑΚΤΗΡΑ | ΠΕΡΙΟΡΙΣΜΕΝΕΣ, ΑΡΝΗΤΙΚΕΣ, ΒΡΑΧΥΧΡΟΝΙΕΣ, ΤΟΠΙΚΟ ΧΑΡΑΚΤΗΡΑ |

7.3 Φάση Λειτουργίας του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ΠΟΙΟΤΗΤΑ ΑΕΡΑ</th>
</tr>
</thead>
</table>

Μελέτη Εκτίμησης Επιπτώσεων Στο Περιβάλλον Από Την Κατασκευή Και Λειτουργία Σταθμού Επεξεργασίας Των Λυμάτων Του Χοιροστασίου Της Εταιρείας Κυριάκος Τσίγκης Χοιροτροφική
7.3 Φάση Λειτουργίας του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Εκπομπή σκόνης</td>
<td>Η εκπομπή σκόνης αναμένεται από τα δρομολόγια των οχημάτων, από και προς το σταθμό, διαμέσου υφιστάμενου δρόμου. Ωστόσο, όπως αναφέρεται και πιο πάνω η συχνότητα διακίνησης των οχημάτων θα είναι ελάχιστη.</td>
<td>Ελάχιστες, Αρνητικές, Περιοδικές</td>
</tr>
</tbody>
</table>
| Θόρυβος και Λονήσεις | • Αναμενόμενη πηγή θορύβου είναι η λειτουργία της ηλεκτρογεννήτριας ισχύς 135 kW. Το επίπεδο θορύβου αναμένεται στα 95dB, με ανώτερο όριο οκτάωρης εργασίας τα 87 dB. Λόγω του σχετικά υψηλού επίπεδου θορύβου η ηλεκτρογεννήτρια θα βρίσκεται σε κλειστό ηχομονωμένο εμπορευματοκιβώτιο που θα ελαχιστοποιεί την εκπομπή θορύβου.
• Η περιοδική κίνηση των φορτηγών οχημάτων απομάκρυνσης των χωνεμένων στερεών από το σταθμό καθώς και των οχημάτων των επισκεπτών, θα είναι επίσης πηγή θορύβου. Η συχνότητα δρομολογιών εκτιμάται στη μια φορά κάθε εβδομάδα με ένταση θορύβου 77dB. | Ελάχιστες, Αρνητικές |
| Οσμές | ➢ Τόσο η αναερόβια όσο και η αερόβια επεξεργασία εμποδίζουν ή αναστέλλουν αντίστοιχα την έκλυση οσμών. Επομένως, δεν εκπέμπονται οσμές από τη διεργασία καθ’αυτή. Δυσορθοδοξία αναμένεται να εκλύεται από τους ανοιχτούς αγωγούς των λυμάτων και τη δεξαμενή υποδοχής. Σε σχέση με την υπάρχουσα κατάσταση σε ότι αφορά στην επεξεργασία των | Σημαντικές, Θετικές |
7.3 Φάση Λειτουργίας του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>λυμάτων, θα υπάρξει σημαντική μείωση της δυσοσμίας σε όλη τη γύρω περιοχή.</td>
<td>➢ Λειτουργία σταθμού αναεροβιας χόνευσης των χοιρολυμάτων</td>
<td>Μεγάλες, Θετικές, Άμεσες</td>
</tr>
<tr>
<td></td>
<td>Η λειτουργία του σταθμού θα επιλύσει πολλά από τα περιβαλλοντικά προβλήματα που προκαλούνται από τη λειτουργία του χοιροστασίου, αφού τα παραγόμενα χοιρολυμάτα θα επεξεργάζονται στο σταθμό. Ένα από τα μεγάλα πλεονεκτήματα της αναεροβικής επεξέργασης είναι η μείωση της δυσοσμίας των αποβλήτων πέραν του 90% και έτσι τα στερεά παράγοντα της επεξέργασης δεν θα εκπέμπουν τις οποιεσδήποτε οσμές. Επίσης η αερόβια επεξέργαση, λόγο της αποφυγής δημιουργίας σηπτικών συνθηκών, εκλάνε χαμηλής έντασης δυσοσμία.</td>
<td></td>
</tr>
<tr>
<td>➢ Απομάκρυνση στερεών παράγοντων της επεξέργασης</td>
<td>Τα παραγόμενα από την επεξέργασια στερεά, θα είναι πλήρως σταθεροποιημένα και δεν θα εκπέμπουν οποιεσδήποτε οσμές, σε αντίθεση με της παρούσας κατάστασης, όπου ανεπεξεργαστεί στερεά μεταφέρονται σε αγροτεμάχια της περιοχής προκαλώντας έντονη δυσοσμία.</td>
<td>Μεγάλες, Θετικές, Άμεσες, Τοπικού χαρακτήρα</td>
</tr>
<tr>
<td>Λέρια απόβλητα</td>
<td>➢ Γενικά</td>
<td>Σημαντικές, Θετικές</td>
</tr>
<tr>
<td></td>
<td>Αέρια απόβλητα προκύπτουν κατά την καύση του παραγόμενου βιοσκότου στην ηλεκτρογεννήτρια. Το προϊόν της καύσης είναι κυρίως διοξείδιο του άνθρακα, το οποίο δεν προσμετράται στο αρνητικό ισοζύγιο του διοξειδίου</td>
<td></td>
</tr>
</tbody>
</table>
7.3 Φάση Λειτουργίας του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>του άνθρακα, καθώς το βιοαέριο εμπίπτει στην κατηγορία των ανανεώσιμων πηγών ενέργειας. Επίσης, με την αναερόβια χώνευση δεσμεύεται το μεθάνιο και καίγεται πριν φτάσει στην ατμόσφαιρα. Το μεθάνιο είναι πολύ πιο δραστικό θερμοκηπιακό αέριο από το διοξείδιο του άνθρακα και εκπέμπεται από τα ανεπεξέργαστα κτηνοτροφικά λύματα στις δεξαμενές εξάτμισης.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Έντομα και μύγες | • Λειτουργία σταθμού αναεροβίας επεξεργασίας | |
| Ο σταθμός αποτελεί ελεγχόμενο σύστημα και σε συνδυασμό με την σταθεροποίηση των λυμάτων αποτρέπεται η δημιουργία συνθηκών προσέλκυσης εντόμων και μυγών. | Μικρές, Μόνιμες, Θετικές |

ΠΟΙΟΤΗΤΑ ΝΕΡΟΥ ΚΑΙ ΕΔΑΦΟΥΣ

Ποιότητα νερό, υπόγεια νερά, υδατικό οικοσύστημα

| • Χρήση εδαφοβελτιωτικού υλικού | |
| Δεν αναμένεται ρύπανση των υπόγειων υδάτων της περιοχής, αντιθέτως η χρήση σταθεροποιημένου εδαφοβελτιωτικού σε αντίθεση με τη μη επεξεργασμένη κοπριά, θα βοηθήσει στη μείωση της ρύπανσης των υδάτων. | Σημαντικές, Θετικές, Μόνιμες |

Ποιότητα εδάφους

| • Χρήση εδαφοβελτιωτικού υλικού | |
| Δεν αναμένεται ρύπανση του εδάφους της περιοχής. Η απόθεση του εδαφοβελτιωτικού υλικού σε καλλιεργητήμα γη διενεργείται με την | Μικρές, Θετικές, Μόνιμες |
7.3 Φάση Λειτουργίας του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Χρήσεις γης</td>
<td>Δεν επηρεάζεται η χρήση γης από τη λειτουργία του σταθμού, λόγω της πολύ μικρής έκτασης του έργου.</td>
<td>Καμία επίπτωση</td>
</tr>
<tr>
<td>Οδικό δίκτυο</td>
<td>Η πρόσβαση στις εγκαταστάσεις εξασφαλίζεται από υπάρχοντα τοπικό δρόμο.</td>
<td>Καμία επίπτωση</td>
</tr>
<tr>
<td>Κυκλοφορία</td>
<td>Στο υπάρχον οδικό δίκτυο δεν θα υπάρχει αισθητή αύξηση της κυκλοφορίας. Θα χρησιμοποιείται μόνο ένα φορτηγό το οποίο θα μεταφέρει περιοδικά το εδαφοβελτιωτικό σε αγροτικά τεμάχια της γύρω περιοχής.</td>
<td>Μικρές, Θετικές, Μόνιμες</td>
</tr>
<tr>
<td>Ανθρωπογενείς περιβάλλον</td>
<td>Με εξαίρεση τη μικρή επιβάρυνση του τοπικού οδικού δικτύου, το έργο θα επηρεάσει θετικά τις γύρω κατοικημένες περιοχές, μειώνοντας σημαντικά τη δυσοσμία των κτηνοτροφικών μονάδων.</td>
<td>Σημαντικές, Θετικές</td>
</tr>
<tr>
<td>Θέσεις εργασίας</td>
<td>Κατά τη φάση λειτουργίας, δεν θα ανοιχθούν θέσεις εργασίας λόγω του ότι το προσωπικό του χοιροστασίου θα διαχειρίζεται το σταθμό.</td>
<td>Καμία επίπτωση</td>
</tr>
</tbody>
</table>
7.3 Φάση Λειτουργίας του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΘΟΝΟΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αισθητική Τοπίου</td>
<td>Η λειτουργία της μονάδας δεν θα επηρεάσει την αισθητική του τοπίου καθώς θα είναι χαμηλό ύψους.</td>
<td>Ελάχιστες, Αρνητικές</td>
</tr>
</tbody>
</table>

ΧΡΗΣΗ ΝΕΡΟΥ ΚΑΙ ΕΝΕΡΓΕΙΑΣ

| Χρήση ενέργειας | Η ηλεκτρική και θερμική ενέργεια που απαιτείται για την λειτουργία της εγκατάστασης παράγεται από την ίδια την μονάδα. Επομένως ενεργειακά η μονάδα είναι αυτόνομη. Επίσης ο σταθμός θα καλύπτει το μεγαλύτερο μέρος των ενεργειακών αναγκών του χοιροστασίου (σε ηλεκτρισμό και θέρμανση). | Σημαντικές, Θετικές |
| Χρήση νερού | Δεν απαιτείται εξωτερική παροχή νερού για τη λειτουργία του σταθμού. Αντιθέτως το παραγόμενο νερό από τη μονάδα αντίστροφης έκπλυσης θα επιστρέφει στο χοιροστάσιο και θα χρησιμοποιείται για σκοπούς έκπλυσης, αντικαθιστώντας έτσι το νερό γεώτρησης. | Θετικές, Μόνιμες |

ΑΠΟΒΛΗΤΑ ΕΠΕΞΕΡΓΑΣΙΑΣ

| Υγρά απόβλητα | Το συμπύκνωμα αλάτων από τη μονάδα αντίστροφης έκπλυσης θα οδηγείται σε δεξαμενή εξάτμισης, καθώς δεν είναι κατάλληλο για άλλη χρήση. Ωστόσο, οι ποσότητες σε σχέση με τη παρούσα κατάσταση θα είναι μειωμένες κατά 80%. | Θετικές, Μόνιμες |
| Στερεά απόβλητα | Το στερεό ρεύμα υπόκειται σε παραπέτα επεξεργασία ξηρανση/αδιαφάνειας | Σημαντικές, Θετικές |
7.3 Φάση Λειτουργίας του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>και στη συνέχεια διατίθεται ως καλής ποιότητας εδαφοβελτιωτικό. Επομένως από το αρχικό απόβλητο προκύπτει στερεό προϊόν βελτιωμένης ποιότητας και αξιοποιήσιμο.</td>
<td></td>
</tr>
</tbody>
</table>

7.4 Φάση Αποξήλωσης του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θόρυβος και Λουθήσεις</td>
<td>Κύρια πηγή θορύβου είναι η λειτουργία εκσκαφών για επιχωμάτωση των υπόγειων εγκαταστάσεων. Ο απαιτούμενος χρόνος αποξήλωσης της μονάδας εκτιμάται στις 4 εβδομάδες. Μικρής έντασης πηγή θορύβου προκύπτει από την κίνηση φορτηγών υλικών σε διάθεση, με συχνότητα 1 φορά την ημέρα.</td>
<td>Μικρές, Αρνητικές, Βραχυπρόθεσμες, Μερικά Αντιμετώπισμες</td>
</tr>
<tr>
<td>Αέρια απόβλητα</td>
<td>Οπως και στη φάση κατασκευής, λόγω της μικρής έκτασης των κατασκευών του έργου, ο αριθμός των υλικών που αναμένεται να χρησιμοποιηθούν για την αποξήλωση θα είναι μικρός και οι εκπομπές</td>
<td>Μικρές, Αρνητικές, Βραχυπρόθεσμες, Μη</td>
</tr>
</tbody>
</table>
7.4 Φάση Αποξήλωσης του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αερίων μάλλον αμελητέες</td>
<td></td>
<td>αντιμετωπίσιμες</td>
</tr>
</tbody>
</table>

ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ

Κυκλοφοριακή επιβάρυνση	Η κίνηση οχημάτων θα είναι μικρή κατά τη φάση αποξήλωσης, εκτιμάται κατά μέσο όρο 1-2 φορτηγά ημερησίως.	Μικρές, Αρνητικές, Βραχυπρόθεσμες
Ανθρωπογενές περιβάλλον	Τα έργα αποξήλωσης της μονάδας δεν αναμένεται να επηρεάσουν την ανθρώπινη δραστηριότητα της περιοχής καθώς είναι μικρής κλίμακας και διάρκειας.	Μικρές, Αρνητικές, Βραχυπρόθεσμες
Λιθαθητική Τοπίου	Η αποξήλωση της εγκατάστασης θα δημιουργήσει ελεύθερο χώρο προς αξιοποίηση.	Ελάχιστες, Αρνητικές

ΧΡΗΣΗ ΝΕΡΟΥ ΚΑΙ ΕΝΕΡΓΕΙΑΣ

| Χρήση νερού | Μικρές ποσότητες νερού θα απαιτηθούν για τις εργασίες και για την καταβροχή του εδάφους προς αποφυγή δημιουργίας σκόνης. | Μικρές, Αρνητικές, Βραχυπρόθεσμες |
| Χρήση ενέργειας | Για την κάλυψη των ενεργειακών αναγκών του εργοταξίου θα χρησιμοποιηθούν διάφορα ηλεκτρικά μηχανήματα, τα οποία θα ηλεκτροδοτούνται από το χοιροστάσιο. | Μικρές, Αρνητικές, Βραχυπρόθεσμες, Μη αντιμετωπίσιμες |

ΑΠΟΒΛΗΤΑ ΕΠΕΞΕΡΓΑΣΙΑΣ
7.4 Φάση Αποξήλωσης του Έργου

<table>
<thead>
<tr>
<th>ΠΑΡΑΜΕΤΡΟΙ</th>
<th>ΠΙΘΑΝΕΣ ΕΠΙΠΤΩΣΕΙΣ</th>
<th>ΚΛΙΜΑΚΑ ΕΠΙΠΤΩΣΕΩΝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υγρά απόβλητα</td>
<td>Με την ίδια μεθοδολογία, όπως κατά τη φάση κατασκευής, τα υγρά απόβλητα που θα προκύψουν κατά τη φάση αποξήλωσης θα προέρχονται κυρίως από το συνεργείο που θα αναλάβει την εργασία. Υπολογίζεται ότι θα απαιτηθεί ένα συνεργείο 4 ατόμων και εργασία χρονικής διάρκειας 4 εβδομάδων, δημιουργώντας 30 λίτρα υγρά απόβλητα ο καθένας ημερησίως.</td>
<td>Μικρές, Αρνητικές, Βραχυπρόθεσμες</td>
</tr>
<tr>
<td>Στερεά απόβλητα</td>
<td>Μπετόν, σκυρόδεμα, μεταλλικές και πλαστικές σωληνώσεις, προστατευτικές επικαλύψεις, ηλεκτρολογική εγκατάσταση και μεταλλικές βαλβίδες θα αποτελούν τα κύρια στερεά απόβλητα που θα δημιουργηθούν κατά τη φάση αποξήλωσης του σταθμού. Το μεγαλύτερο μέρος υλικών είναι ανακυκλώσιμα, επομένως δεν αναμένεται παραμονή σκουπιδιών μετά την παράδοση του χώρου. Τα αδρανή υλικά θα απορριφθούν σε εγκεκριμένο χώρο.</td>
<td>Μικρές, Αρνητικές, Βραχυπρόθεσμες</td>
</tr>
</tbody>
</table>
7.5 Επιτυώσεις Μη Κατασκευής Του Έργου

Για σκοπούς σύγκρισης, μεταξύ της υφιστάμενης κατάστασης διαχείρισης των αποβλήτων του χοιροστασίου και της προτεινόμενης (κατασκευή και λειτουργία του βιολογικού σταθμού), παρουσιάζεται συνοπτικά η υπάρχουσα κατάσταση διαχείρισης κτηνοτροφικών αποβλήτων από την εταιρεία ΝΙΚΟΣ ΠΙΜΠΟΣ ΛΤΔ. Η δυναμικότητα του χοιροτροφείου είναι 900 χοιρομητέρων και 10.800 χοίρων πάχυνσης.

Οι εκπομπές αέριων ρύπων υπολογίσθηκαν σύμφωνα με τις οδηγίες του Τμήματος Επιθεώρησης Εργασίας και το εγχειρίδιο CORINAIR 2002, για χοιροτροφικές και πτηνοτροφικές μονάδες, σύμφωνα με τα παρακάτω. Οι εκπομπές αφορούν μόνο τους ρύπους που προκαλούνται κατά τη διαχείριση των αποβλήτων και όχι την εντερική ζύμωση, η οποία συνυπολογίζεται καθώς δεν επηρεάζεται από τη λειτουργία ή όχι του σταθμού αναερόβιας επεξέργασιας.

- Χοιροτροφεία

1. \[CH_4 = \text{Συνολικός αριθμός ζώων} \times 7kg CH_4 / \text{Ζώο} \]

2. \[NH_3 = \text{Αριθμός Χοιρομητέρων} \times 9 kg NH_3 / \text{Ζώο} \]

\[NH_3 = \text{Αριθμός Χοίρων Πάχυνσης} (>20 Kg) \times 3.5 Kg NH_3/\text{Ζώο} \]

3. \[N_2O = \text{Συνολικό Βάρος Ζώων} (\text{τόνους}) \times 8 Kg N_2O / \text{τόνο} \]

\[(\text{Χοιρομητέρες} \approx 200 Kg, \text{Χοίροι Πάχυνσης} \approx 45 Kg) \]

Το μεθάνιο και το νιτρώδες οξείδιο θεωρούνται πολύ επιβλαβή θερμοκηπιακά αέρια, ιδιαίτερα δραστικά. Ο περιορισμός τους και η μη έκλυση στην ατμόσφαιρα, αποτελεί ιδιαίτερα θετική συμβολή. Ο δείκτης δραστικότητας σε σχέση με το διοξείδιο του άνθρακα είναι:

<table>
<thead>
<tr>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>NH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>310</td>
<td>0</td>
</tr>
</tbody>
</table>

Μελέτη Εκτίμησης Επιπτώσεων Στο Περιβάλλον Από Την Κατασκευή Και Λειτουργία Σταθμού Επεξέργασίας Των Λυμάτων Του Χοιροστασίου Της Εταιρείας Νίκος Πίμπος ΛτΔ 94
Η αμμονία δεν συμβάλει στο φαινόμενο του θερμοκηπίου όμως προκαλεί πρόβλημα οσμών και επιβάρυνσης στα εδάφη. Περιληπτικά στον παρακάτω πίνακα γίνεται σύγκριση της υπάρχουσας κατάστασης διαχείρισης των λυµάτων σε σχέση με την δημιουργία του αναερόβιου σταθμού.

Πίνακας 7-1. Συγκριτικός πίνακας εφαρμοζομένης τεχνικής διαχείρισης και μελετώμενης

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Τωρινή Κατάσταση</th>
<th>Αναερόβια Επεξεργασία</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>Εκπομπή στην ατμόσφαιρα 81.900Κg/έτος από την διαχείριση των λυµάτων. Αντιστοιχεί σε 1900tn CO₂.</td>
<td>Καύση του CH₄ προς παραγωγή ενέργειας</td>
</tr>
<tr>
<td>N₂O</td>
<td>Εκπομπή στην ατμόσφαιρα 5.300 kg/έτος από την διαχείριση των λυµάτων. Αντιστοιχεί σε 1650tn CO₂.</td>
<td>Ελάττωση του ολικού Αζώτου πριν την διάθεση στο έδαφος. N₂O δεν ελευθερώνεται στην ατμόσφαιρα από την βιολογική επεξεργασία.</td>
</tr>
<tr>
<td>NH₃</td>
<td>Εκπομπή στην ατμόσφαιρα 45.900Κg /έτος από την διαχείριση των λυµάτων.</td>
<td>Η αναερόβια επεξεργασία σε συνδυασμό με την δεξαμενή αερίων απομακρύνει άνω του 85% του αρχικού αμμονιακού αζώτου, μειώνοντας αντίστοιχα τις εκπομπές αμμονίας στο περιβάλλον.</td>
</tr>
<tr>
<td>Οσμές</td>
<td>Αμμονία, Υδρόθειο και περίπου 100 δύσοσμες χημικές ενώσεις ελευθερώνονται από τα λύματα.</td>
<td>Πλήρης καύση όλων των παραγόμενων αερίων πριν την έξοδο στην ατμόσφαιρα. Δέσμευση υδρόθειου πριν την καύση.</td>
</tr>
<tr>
<td>Εδάφη</td>
<td>Επιβάρυνση εδαφών από άμεση απόθεση λυµάτων και διείσδυση υγρών στο υπέδαφος.</td>
<td>Παραγωγή σταθεροποιημένου, καλής ποιότητας εδαφοβελτιωτικού, άοσµου και ελεγχόμενης σύστασης.</td>
</tr>
<tr>
<td>Μολύνσεις</td>
<td>Δημιουργία εστίων μόλυνσης στις δεξαμενές εξάτμιση και πάχυνσης των λυµάτων. Παρουσία εντόμων και μυγών.</td>
<td>Δεξαμενές εξάτμισης θα χρησιμοποιούνται για το παραγόμενο νερό όμως με πολύ μικρότερο βιολογικό φορτίο.</td>
</tr>
</tbody>
</table>
8 ΕΙΣΗΓΗΣΕΙΣ ΚΑΙ ΠΟΡΙΣΜΑΤΑ

8.1 Εισαγωγή

Το ίδιο το έργο είναι ένα σύστημα αντιρρύπανσης και παρατίθενται εδώ γενικές οδηγίες για την επισήμανση των αναγκαίων ενεργειών που θα εξασφαλίσουν την ομαλή λειτουργία του:

- Ενημέρωση κοινού και εργαζομένων.
- Πλήρης ετοιμότητα για κάλυψη των κανόνων ασφαλείας.
- Κάλυψη απαιτήσεων λειτουργίας και χειρισμού.
- Καθημερινή παρακολούθηση της διαδικασίας. Παρακολούθηση θερμοκρασίας στα κρίσιμα σημεία και σύστημα καταγραφής των δεδομένων αυτών.
- Πρέπει να καταρτιστεί εβδομαδιαίο, μηνιαίο και ετήσιο πρόγραμμα συντήρησης μηχανολογικού εξοπλισμού.
- Ηλεκτρολογικά όργανα (παρακολούθηση-συντήρηση).
- Τακτική αποκατάσταση του εδαφοβελτιωτικού.
- Παρακολούθηση προβλημάτων βιολογικής διαδικασίας.
- Παρακολούθηση προβλημάτων μηχανολογικού εξοπλισμού.
- Παρακολούθηση προβλημάτων ηλεκτρικών συσκευών.

Όσον αφορά τα μέτρα για την αντιμετώπιση των επιπτώσεων μπορούν να συνοψιστούν ως εξής:

- Φάση κατασκευής
 - Εξασφάλιση της ελεύθερης κίνησης των όμβριων κατά τη φυσική τους διαδρομή.
 - Χρησιμοποίηση των προϊόντων εκσκαφής για επανεπιχώσεις, χρήση των πλεοναζόντων για διαμόρφωση περιβάλλοντος χώρου ή απόρριψή τους σε χώρο υγειονομικής ταφής. Καθαρισμός του χώρου μετά το τέλος των εργασιών.
Τήρηση του αφαντου εργασίας για το θόρυβο, συνεχώς παρακολούθηση για την μη υπέρβαση του επιτρεπτού ορίου.

Φάση λειτουργίας

- Αναγκαιότητα εγκατάστασης φίλτρων απόσμησης εντός του κτιρίου ηλεκτρομηχανολογικού εξοπλισμού για αντιμετώπιση των οσμών.
- Διάθεση του εδαφοβελτιωτικού, εξέταση της ποιότητάς του.
- Εγκατάσταση συστήματος πυρόσβεσης.
- Τοποθέτηση καταλληλών σιγαστήρων ή άλλων προστατευτικών διατάξεων μπορεί να λύσει το πρόβλημα του θορύβου των μηχανημάτων.
- Συνεχής καθαρότητα των εγκαταστάσεων, ελέγχος της στάθμης θορύβου.
- Τήρηση όλων των ειδικών προδιαγραφών υγιεινής και ασφάλειας κατά την εργασία που αφορούν στους εργαζόμενους σε εγκαταστάσεις επεξεργασίας λυμάτων.
- Εφαρμογή όλων των απαιτήσεων του Κανονισμού 1774/2002.

8.2 Περιβαλλοντική Βιωσιμότητα και Συμβατικότητα του Προτεινόμενου Έργου

Το προτεινόμενο σύστημα αναερόβιας επεξεργασίας παρουσιάζει αρκετά πλεονεκτήματα όσον αφορά τη δημιουργία οσμών σε σχέση με άλλα συστήματα διαχείρισης κτηνοτροφικών αποβλήτων. Οι οσμές που δημιουργούνται είναι μειωμένες.

Το σύστημα παραγωγής βιοαερίου προς παραγωγή ενέργειας είναι ένα σύστημα παραγωγής πράσινης ενέργειας και συμβάλλει στη μείωση των εκπομπών θερμοκηπιακών αερίων.

Επίσης, η σωστή διαχείριση κτηνοτροφικών αποβλήτων συμβάλλει στον έλεγχο εκπομπών αμμονίας. Το προτεινόμενο σύστημα επεξεργασίας και διαλογής συνεισφέρει στη μείωση των επιπτώσεων από την μη ικανοποιητική σημερινή διαχείριση κτηνοτροφικών αποβλήτων της περιοχής. Επίσης, τα συστήματα αναερόβιας χώνευσης συνεισφέρουν στην βελτίωση της ποιότητας των υδάτων μιας και ελαχιστοποιούνται οι εκπλύσεις και οι απορροές προς υδάτινους αποδέκτες.
8.3 Μέτρα Αντιμετώπισης των Επιπτώσεων

8.3.1 Μέτρα κατά της Ηχορύπανσης
Γενικά, τα μέτρα αντιμετώπισης του θορύβου μπορούν να εφαρμοστούν μέσω ενός ή περισσοτέρων από τους εξής τρόπους:

- Αντιμετώπιση θορύβου στην πηγή.
- Ελάττωση του θορύβου κατά τη διάδοση μεταξύ πηγής και δέκτη.
- Αντιμετώπιση του θορύβου στο δέκτη.

Από τους γενικούς αυτούς τρόπους πρακτικότερη είναι η μείωση του θορύβου κατά τη διάδοση του από την πηγή προς τον δέκτη.

8.3.2 Αντιθορυβικά Μέτρα κατά την Κατασκευή

- Έλεγχος του θορύβου των μηχανημάτων του εργοτάξιου με χρήση μοντέλων με μειωμένες εκπομπές θορύβου, εφοδιασμένων με πιστοποιητικό τύπου ΕΟΚ.
- Συνεκτίμηση του θορύβου στον καθορισμό του προγράμματος των εργασιών και της μεθοδολογίας κατασκευής για τη μείωση των εκπομπών θορύβου.
- Εφαρμογή τεχνικών λύσεων με κατασκευή προσοφυλακών ηχοπετασμάτων περί τον χώρο του εργοτάξιου και χρήση κινητών αντιθορυβικών πετασμάτων στα σημεία εκπομπής υψηλής στάθμης θορύβου.

Ο ανάδοχος θα πρέπει να επιλέξει τη διάταξη των εργοταξίων και τον προγραμματισμό των εργασιών έτσι ώστε να προκληθεί η ελάχιστη παρενόχληση στο αστικό ανθρωπογενές περιβάλλον της άμεσης και της ευρύτερης περιοχής του έργου.

- Μέτρα για τον Οδικό Θόρυβο

Με βάση τα συμπεράσματα του προηγούμενου κεφαλαίου, από την ανάλυση των επιπτώσεων θορύβου, προκύπτει ότι δεν αναμένεται να υπάρξει υπέρβαση των θεσμοθετημένων ορίων θορύβου κατά τη λειτουργία του έργου. Κατά συνέπεια, δεν απαιτούνται ιδιαίτερα μέτρα μείωσης του οδικού κυκλοφοριακού θορύβου κατά τη φάση λειτουργίας του έργου.
8.3.3 Μέτρα Τοπιοτέχνησης

Ο χώρος όπου θα κατασκευαστεί ο σταθμός θα πρέπει να περιφραχθεί κατάλληλα και να τοπιοτεχνηθεί. Πάντως τα οικοδομικά έργα θα είναι χαμηλού υψομέτρου, χωρίς εξάρσεις.

8.3.4 Μέτρα Διαχείρισης Αέριων Αποβλήτων

→ Μέτρα κατά τη φάση κατασκευής

Όπως διαπιστώθηκε σε προηγούμενο κεφάλαιο, αναμένονται άμεσες επιπτώσεις από τις εκπομπές σκόνης λόγω των χωματουργικών εργασιών, στην περιοχή άμεσης επιρροής του έργου. Συνεπώς προτείνονται μέτρα για την αντιμετώπιση των εκπομπών και της δημιουργίας σκόνης κατά τη διάρκεια της κατασκευής.

Ο έλεγχος των εκπομπών σκόνης γίνεται με απλές μεθόδους διαχείρισης και το επίπεδο όχλησης εξαρτάται σημαντικά από τα μέτρα ελέγχου στην πηγή. Όσον αφορά την παραγωγή σκόνης λόγω κίνησης των εργοταξικών οχημάτων, ένας κώδικας διαχείρισης για τον περιορισμό της σκόνης κατά τη διάρκεια της κατασκευής περιλαμβάνει:

- Υγρασία των διαδρόμων κίνησης.
- Επέμβαση σε γυμνές επιφάνειες όπου είναι αναγκαίο.
- Χρήση μηχανημάτων με εξατμίσεις στραμμένες μακριά από το έδαφος.

Επίσης θα πρέπει να ελαχιστοποιηθούν οι αποθέσεις ή αποσπάσεις υλικών σε/από σωρούς, και η εναπόθεση υλικών σε σωρούς θα πρέπει να γίνεται από το ελάχιστο δυνατό ύψος. Η περίφραξη ή η κάλυψη των σωρών που δεν χρησιμοποιούνται ελαττώνουν την διάβρωση τους από τον άνεμο.

Όσον αφορά τις σκόνες που θα δημιουργούνται κατά τη μεταφορά χύδην υλικών, προτείνονται τα παρακάτω μέτρα τα οποία έχουν σχέση και με την ασφάλεια οδήγησης:

- Ειδική σήμανση σε όλο το μήκος της διαδρομής μεταφοράς των υλικών ότι εκτελούνται έργα.
- Σήμανση στις εξόδους των εργοταξίων.
8.3.5 Μέτρα για τη Διαχείριση του Εργοταξίου

Για την αντιμετώπιση των περιβαλλοντικών επιπτώσεων από την κατασκευή και λειτουργία του έργου πρέπει να ληφθούν μέτρα αποκατάστασης μετά την κατασκευή των έργων.

Πρέπει να αποκατασταθούν όλοι οι εργοταξιακοί χώροι μετά την κατασκευή των έργων με την άρση όλων των βοηθητικών εγκαταστάσεων, υλικών και εροδίων καθώς και των τμημάτων τα οποία έχουν αποψιλωθεί και διαταραχθεί.

Κατά τη διάρκεια της κατασκευής θα πρέπει να προβλεφθεί η συλλογή λαδιών και πετρελαιοειδών αποβλήτων από τα παντός είδους μηχανήματα καθώς και η συλλογή των απορριμμάτων του εργοταξίου. Η διαχείρισή τους θα γίνεται σύμφωνα με το υπάρχον Νομικό πλαίσιο.

8.3.6 Μέτρα Διαχείρισης των Υγρών και Στερεών Αποβλήτων

Υγρά απόβλητα παράγονται κατά τη φάση κατασκευής από τους εργαζόμενους στο εργοτάξιο. Μπορεί εύκολα να αντιμετωπισθεί με την τοποθέτηση χημικών τουαλετών κατά τη διάρκεια κατασκευής του έργου.

Υλικά συσκευασίας του εξοπλισμού και των υλικών που εισέρχονται στο σταθμό σε όλες τις φάσεις του έργου, θα πρέπει να συγκεντρώνονται προς ανακύκλωση όπου είναι δυνατό, ειδάλλως θα πρέπει να αποτίθενται σε εγκεκριμένο χώρο απόθεσης σκυβάλων.
8.3.7 Μέτρα Ασφάλειας και Υγείας Εργαζομένων

Τα παρακάτω μέτρα θα πρέπει να ληφθούν, για την εξασφάλιση της υγείας και της προστασίας των εργαζομένων στο χώρο του σταθμού:

- Εγκατάσταση συστήματος πυρανίχνευσης - πυρόσβεσης.
- Έλεγχος στάθμης θορύβου και λήψη τόσο ατομικών μέτρων προστασίας όσο και χρήση προστασιακών μέτρων.
- Επιμελής καθαριότητα των χώρων της εγκατάστασης.
- Σύστημα αυτόματης απενεργοποίησης μηχανημάτων σε περίπτωση κινδύνου.
- Τήρηση όλων των ειδικών προδιαγραφών υγεινής και ασφάλειας που προβλέπονται για μονάδες επεξεργασίας λυμάτων.
- Εφαρμογή των προνοιών του Κανονισμού 1774/2002 ΕΚ για την διαχείριση ζωικών υποπροϊόντων που δεν προορίζονται για ανθρώπινη κατανάλωση.
9 ΒΙΒΛΙΟΓΡΑΦΙΑ

- Υπουργείο Γεωργίας Φυσικών Πόρων και Περιβάλλοντος (2002). Η Γεωλογία της Κύπρου, Δελτίο Απ. 10, Τμήμα Γεωλογικής Επισκόπησης, Λευκωσία.

ΞΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ

ΗΛΕΚΤΡΟΝΙΚΕΣ ΠΗΓΕΣ

10 ΠΑΡΑΡΤΗΜΑΤΑ

A. ΣΧΕΔΙΑ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΡΓΟΥ
B. ΠΛΗΡΟΦΟΡΙΕΣ ΠΟΥ ΑΦΟΡΟΥΝ ΤΕΜΑΧΙΟ ΓΗΣ/ΠΙΣΤΟΠΟΙΗΤΙΚΑ
Γ. ΓΕΩΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ ΚΥΠΡΟΥ
Δ. ΜΕΤΕΩΡΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ
Ε. ΦΩΤΟΓΡΑΦΙΕΣ
ΠΑΡΑΡΤΗΜΑ Α

ΣΧΕΔΙΑ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΡΓΟΥ
ΠΑΡΑΡΤΗΜΑ Β

ΠΛΗΡΟΦΟΡΙΕΣ ΠΟΥ ΑΦΟΡΟΥΝ ΤΕΜΑΧΙΟ ΓΗΣ/ΠΙΣΤΟΠΟΙΗΤΙΚΑ
ΠΑΡΑΡΤΗΜΑ Γ

ΓΕΩΛΟΓΙΚΑ & ΕΔΑΦΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ
ΠΑΡΑΡΤΗΜΑ Δ

ΜΕΤΕΩΡΟΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ
ΠΑΡΑΡΤΗΜΑ Ε

ΦΩΤΟΓΡΑΦΙΕΣ